Advertisement

Biologia

, Volume 70, Issue 5, pp 690–702 | Cite as

Effect of novel quercetin pivaloyl ester on functions of adult rat microglia

  • Marcela Kuniaková
  • Nataša Mrvová
  • Vladimír Knezl
  • Lucia RačkováEmail author
Section Cellular and Molecular Biology

Abstract

The pathogenic mechanisms involved in the development of ageing-related neurodegenerative diseases can involve alterations of microglia, the brain counterpart of macrophages. These include microglial over-activation, replicative senescence, accumulation of autofluorescent lipofuscin and mitochondrial dysfunction. Substantial evidence suggests that dietary flavonoids are capable to modulate and probably revert the hyperactive and senescence phenotype of these cells. The present study assessed the effect of a novel semisynthetic flavonoid 3’-O-(3-chloropivaloyl)quercetin (CPQ) on the functions of adult rat microglia, isolated secondarily to the establishment of mixed glial cultures and compared it with the effect of the unmodified molecule, quercetin. CPQ suppressed NO release by lipopolysaccharide-stimulated cells more effectively than did quercetin. Unlike quercetin, CPQ inhibited the injury of cell viability due to oxidative challenge and suppressed senescence-associated β-galactosidase staining of microglia isolated from long-term mixed glial cultures. Both flavonoids tested protected the functions of microglia in response to inflammatory stimuli. Furthermore, both compounds protected the isolated microglia from adverse effects of HEPES-buffered media. This was followed by an increase of cell yields, improvement of lysosomal function, suppression of nuclear protein oxidation and inhibition of lipofuscin accumulation (at a slightly more profound effect of CPQ). In conclusion, our data support the experimental evidence suggesting beneficial effects of flavonoids in modulation of neuropathology- and ageing-related alterations of microglia. In this regard, the novel pivaloyl ester of quercetin might represent a new drug with improved potential against neurodegenerative diseases.

Key words

microglia ageing activation senescence flavonoids neurodegeneration 

Abbreviations

AP-1

activator protein 1

A.U.

arbitrary units

CPQ

3’-O-(3-chloropivaloyl)quercetin

DAPI

2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride

DIV

days in vitro

DPPH

2,2-diphenyl-1-picrylhydrazyl

FITC

fluorescein isothiocyanate

GM-CSF

granulocyte-macrophage colony-stimulating factor

LPS

lipopolysaccharide

MGC

mixed glial cultures

MTT

thiazolyl blue tetrazolium bromide

NADPH

nicotinamide adenine dinucleotide phosphate

NBT

nitrotetrazolium blue chloride

P/S

penicillin/streptomycin

PBS

Dulbecco’s phosphate buffered saline

PMA

phorbol 12-myristate 13-acetate

Q

quercetin

ROS

reactive oxygen species

SA-/3-Gal

senescence associated (SA) /3-galactosidase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acarin L., González B., Castellano B. & Castro A.J. 1997. Quantitative analysis of microglial reaction to a cortical excitotoxic lesion in the early postnatal brain. Exp. Neurol. 147: 410–417.CrossRefGoogle Scholar
  2. Alliot F., Lecain E., Grima B. & Pessac B. 1991. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc. Natl. Acad. Sci. USA 88: 1541–1545.CrossRefGoogle Scholar
  3. Bournival J., Plouffe M., Renaud J., Provencher C. & Marti-noli M.-G. 2012. Quercetin and sesamin protect dopamin-ergic cells from MPP+-induced neuroinflammation in a mi-croglial (N9)-neuronal (PC12) coculture system. Oxid. Med. Cell. Longev. 2012: 921941.CrossRefGoogle Scholar
  4. Carson M.J., Reilly C.R., Sutcliffe J.G. & Lo D. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22: 72–85.CrossRefGoogle Scholar
  5. Chakraborty J., Singh R., Dutta D., Naskar A., Rajamma U. & Mohanakumar K.P. 2014. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s disease. CNS Neurosci. Ther. 20: 10–19.CrossRefGoogle Scholar
  6. de Freitas V., da Silva Porto P., Assuncao M., Cadete-Leite A., Andrade J.P. & Paula-Barbosa M.M. 2004. Flavonoids from grape seeds prevent increased alcohol-induced neuronal lipo-fuscin formation. Alcohol Alcohol. 39: 303–311.CrossRefGoogle Scholar
  7. Flanary B.E. & Streit W.J. 2004. Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45: 75–88.CrossRefGoogle Scholar
  8. Gieche J., Mehlhase J., Licht A., Zacke T., Sitte N. & Grune T. 2001. Protein oxidation and proteolysis in RAW264.7 macrophages: effects of PMA activation. Biochim. Biophys. Acta 1538: 321–328.CrossRefGoogle Scholar
  9. Giulian D. & Baker T.J. 1986. Characterisation of ameboid mi-croglia isolated from developing mammalian brain. J. Neurosci. 6: 2163–2178.CrossRefGoogle Scholar
  10. Jang S. & Johnson R.W. 2010. Can consuming flavonoids restore old microglia to their youthful state? Nutr. Rev. 68: 719–728.CrossRefGoogle Scholar
  11. Kang C.H., Choi Y.H., Moon S.K., Kim W.J. & Kim G.Y. 2013. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 17: 808–813.CrossRefGoogle Scholar
  12. Kao T.K., Ou Y.C., Raung S.L., Lai C.Y., Liao S.L. & Chen C.J. 2010. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci. 86: 315–321.CrossRefGoogle Scholar
  13. Karuppagounder S.S., Madathil S.K., Pandey M., Haobam R., Rajamma U. & Mohanakumar K.P. 2013. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236: 136–148.CrossRefGoogle Scholar
  14. Kelsey N.A., Wilkins H.M. & Linseman D.A. 2010. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15: 7792–7814.CrossRefGoogle Scholar
  15. Kumar S. & Pandey A.K. 2013. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013: 162750.PubMedGoogle Scholar
  16. Lovelace M.D. & Cahill D.M. 2007. A rapid cell counting method utilising acridine orange as a novel discriminating marker for both cultured astrocytes and microglia. J. Neurosci. Methods 165: 223–229.CrossRefGoogle Scholar
  17. Luo X.G., Ding J.Q. & Chen S.D. 2010. Microglia in the aging brain: relevance to neurodegeneration. Mol. Neurodegener. 5: 12.CrossRefGoogle Scholar
  18. Maeba R., Shimasaki H., Ueta N. & Inoue K. 1990. Accumulation of ceroid-like pigments in macrophages cultured with phos-phatidylcholine liposomes in vitro. Biochim. Biophys. Acta 1042: 287–293.CrossRefGoogle Scholar
  19. Milackova I., Rackova L., Majekova M., Mrvova N. & Stefek M. 2015. Protection or cytotoxicity mediated by a novel quinonoid-polyphenol compound? Gen. Physiol. Biophys. 34: 51–64.CrossRefGoogle Scholar
  20. Moussaud S. & Draheim H.J. 2010. A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods 187: 243–253.CrossRefGoogle Scholar
  21. Oda K., Ogata S., Koriyama Y., Yamada E., Mifune K. & Ikehara Y. 1988. Tris inhibits both proteolytic and oligosaccharide processing occurring in the Golgi complex in primary cultured rat hepatocytes. J. Biol. Chem. 263: 12576–12583.PubMedGoogle Scholar
  22. Persson H.L., Yu Z., Tirosh O., Eaton J.W. & Brunk U.T. 2003. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic. Biol. Med. 34: 1295–1305.CrossRefGoogle Scholar
  23. Pietsch K., Saul N., Chakrabarti S., Stürzenbaum S.R., Menzel R. & Steinberg C.E. 2011. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12: 329–347.CrossRefGoogle Scholar
  24. Poole C.A., Reilly H.C. & Flint M.H. 1982. The adverse effects of HEPES, TES, and BES zwitterion buffers on the ultrastructure of cultured chick embryo epiphyseal chondrocytes. In Vitro 18: 755–765.CrossRefGoogle Scholar
  25. Rook G.A., Steele J., Umar S. & Dockrell H.M. 1985. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J. Immunol. Methods 82: 161–167.CrossRefGoogle Scholar
  26. Santambrogio L., Belyanskaya S.L., Fischer F.R., Cipriani B., Brosnan C.F., Ricciardi-Castagnoli P., Stern L.J., Strominger J.L. & Riese R. 2001. Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. USA 98: 6295–6300.CrossRefGoogle Scholar
  27. Stolzing A., Widmer R., Jung T., Voss P. & Grune T. 2006. Tocopherol-mediated modulation of age-related changes in microglial cells: turnover of extracellular oxidized protein material. Free Radic. Biol. Med. 40: 2126–2135.CrossRefGoogle Scholar
  28. Streit W.J. 1990. An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J. Histochem. Cytochem. 38: 1683–1686.CrossRefGoogle Scholar
  29. Streit W.J. & Xue Q.S. 2010. The brain’s aging immune system. Aging Dis. 1: 254–261.PubMedPubMedCentralGoogle Scholar
  30. Sundelin S.P. & Terman A. 2002. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 110: 481–489.CrossRefGoogle Scholar
  31. Tsikas D. 2007. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 851: 51–70.CrossRefGoogle Scholar
  32. Ulker S., McKeown P.P. & Bayraktutan U. 2003. Vitamins reverse endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities. Hypertension 41: 534–539.CrossRefGoogle Scholar
  33. Veverka M., Gallovic J., Svajdlenka E., Veverkova E., Pronayova N., Milackova I. & Stefek M. 2013. Novel quercetin derivatives: synthesis and screening for antioxidant activity and aldose reductase inhibition. Chem. Papers 67: 76–83.CrossRefGoogle Scholar
  34. von Bernhardi R., Ramírez G., Toro R. & Eugenín J. 2007. Proinflammatory conditions promote neuronal damage mediated by amyloid precursor protein and decrease its phagocytosis and degradation by microglial cells in culture. Neurobiol. Dis. 26: 153–164.CrossRefGoogle Scholar
  35. von Bernhardi R., Tichauer J. & Eugenín-von Bernhardi L. 2011. Proliferating culture of aged microglia for the study of neu-rodegenerative diseases. J. Neurosci. Methods 202: 65–69.CrossRefGoogle Scholar
  36. Wong W.T. 2013. Microglial aging in the healthy CNS: pheno-types, drivers, and rejuvenation. Front. Cell Neurosci. 7: 22.PubMedPubMedCentralGoogle Scholar
  37. Žižková P., Blaškovič D., Májeková M., Švorc L., Račková L., Ratkovská L., Veverka M. & Horáková L. 2014. Novel quercetin derivatives in treatment of peroxynitrite-oxidized SERCA1. Mol. Cell. Biochem. 386: 1–14.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Marcela Kuniaková
    • 1
  • Nataša Mrvová
    • 2
  • Vladimír Knezl
    • 2
  • Lucia Račková
    • 2
    Email author
  1. 1.Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Institute of Experimental Pharmacology and ToxicologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations