Acta Parasitologica

, Volume 63, Issue 4, pp 795–801 | Cite as

Low rates of Plasmodium falciparum Pfcrt K76T mutation in three sentinel sites of malaria monitoring in Côte d’Ivoire

  • Abibatou KonatéEmail author
  • Paterne Akpa Gnagne
  • Valérie Akoua Bédia-Tanoh
  • Mireille Amiah-Droh
  • Dominique Konan Tano
  • Hervé Ignace Eby Menan
  • William Yavo
Original Paper


Despite efforts to eliminate it, malaria remains a major public health concern, particularly in Côte d’Ivoire. Chloroquine (CQ) was one of the first drugs used for its treatment, but was officially withdrawn from the market in 2007 following reports of high levels of chloroquine resistance. The present study was carried out after the withdrawal of CQ and provides an update on the rates of CQ resistance in Côte d’Ivoire. Samples were collected between September 2013 and March 2014 in Abidjan and from January to May 2016 in Abengourou and San Pedro through cross-sectional studies. Parasitemia was assessed by microscopy, and single nucleotide polymorphism in the Pfcrt (codon 76) gene was analyzed by nested PCR and restriction fragment length polymorphism. A total of 343 samples were analyzed: 119, 106 and 118 were from Abidjan, Abengourou, and San Pedro, respectively. The sex ratio of patients was 0.92. The mean age of patients enrolled was 9.6 years (SD = 10.8). The geometric mean of parasite density was 21,337 parasites/μL (SD = 49,508; range, 2,000-200,000). Molecular analysis revealed 57 K76T mutants (16.6%): 33, 9, and 15 in Abidjan, Abengourou and in San Pedro, respectively. Most of these were found in patients aged ≤15 years (42/57) who had parasitemia greater than 10,000 parasites/μL (40/57). This is the first study conducted in Côte d’Ivoire reporting a decline in Pfcrt K76T mutation rate. Thus, our results indicate the importance of following up on the observed trend also at a national level.


Malaria Plasmodium falciparum Pfcrt K76T Côte d’Ivoire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aba T.Y., Moh R., Cissé L., Yapo-Kouadio G.C., Ello F.N., Mossou C. et al. 2016. Plasmodium falciparum malaria in northern Côte d’Ivoire: prevalence in the general hospital of Tanda sanitary district. Malaria World Journal, 7, 1Google Scholar
  2. Ako B.A., Offianan A.T., Johansson M., Penali L.K., Nguetta S-P.A., Sibley C.H. 2012. Molecular analysis of markers associated with chloroquine and sulfadoxine/pyrimethamine resistance in Plasmodium falciparum malaria parasites from southeastern Côte d’Ivoire by the time of Artemisinin-based Combination Therapy adoption in 2005. Infection and Drug Resistance, 1, 5–113. DOI:10.2147/IDR.S31409Google Scholar
  3. Alifrangis M., Lusingu J.P., Mmbando B., Dalgaard M.B., Vester-gaard L.S., Ishengoma D. et al. 2009. Five-year surveillance of molecular markers of Plasmodium falciparum antimalarial drug resistance in Korogwe District, Tanzania: accumulation of the 581G mutation in the P. falciparum dihydropteroate synthase gene. American Journal of Tropical Medicine and Hygiene, 1, 80–523Google Scholar
  4. Assi S-B., Aba Y.T., Yavo J.C., Nguessan A.F., Tchiekoi N.B., San K.M. et al. 2017. Safety of a fixed-dose combination of artesunate and amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in real-life conditions of use in Côte d’Ivoire. Malaria Journal, 16, 8. DOI: 10.1186/s12936-016-1655-1CrossRefGoogle Scholar
  5. Assi S-B., Henry M-C., Rogier C., Dossou-Yovo J., Audibert M., Mathonnat J. et al. 2013. Inland valley rice production systems and malaria infection and disease in the forest region of western Côte d’Ivoire. Malaria Journal, 12, 233. DOI: 10.1186/1475-2875-12-233CrossRefGoogle Scholar
  6. Azagoh-Kouadio R., Enoh S.J., Kassi K.F., Cisse I., Sinde K.C., Couitchere L. et al. 2017. Paludisme de l’enfant: Prise en charge au CHU de Treichville. Revue Internationale des Sciences Médicales, 1, 19–26. (In French)Google Scholar
  7. Balogun S.T., Sandabe U.K., Bdliya D.N., Adedeji W.A., Okon K.O., Fehintola F.A. 2016. Asymptomatic falciparum malaria and genetic polymorphisms of Pfcrt K76T and Pfmdr1 N86Y among almajirai in northeast Nigeria. Journal of Infection in Developing Countries, 1, 10–290. DOI: 10.3855/jidc.6853Google Scholar
  8. Bassa F.K., Ouattara M., Silué K.D., Adiossan L.G., Baikoro N., Koné S. et al. 2016. Epidemiology of malaria in the Taabo health and demographic surveillance system, south-central Côte d’Ivoire. Malaria Journal, 15, 9. DOI: 10.1186/s12936-015-1076-6CrossRefGoogle Scholar
  9. Bla B.K., Yavo W., Trébissou J., Kipré R.G., Yapi F.H., N’guessan J.D. et al. 2014. Polymorphisms of the Pfatpase 6 and Pfcrt gene and their relationship with the in vitro susceptibility to dihydroartemisinin and chloroquine of Plasmodium falci-parum isolates from Abobo, Côte d’Ivoire. Annals of Para-sitology, 1, 60–259Google Scholar
  10. Carneiro I., Roca-Feltrer A., Griffin J.T., Smith L., Tanner M., Schel-lenberg J.A. et al. 2010. Age-patterns of Malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One, 5, e8988. DOI: 10.1371/journal.pone.0008988.g002CrossRefGoogle Scholar
  11. Charmot G., Amat-Roze J.M., Rodhain F., Le Bras J., Coulaud J.P. 1991. Abord géographique de la chloroquine-résistance de Plasmodium falciparum en Afrique tropicale. Annales de la Société Belge de Medecine Tropicale, 1, 71–187. (In French)Google Scholar
  12. Diawara B., De Muyncka, Coulibaly A., Niangue J., Van Der S.P. 1996. Evaluation du système ivoirien de surveillance sentinelle de la chimiosensibilité des antipaludiques. Médecine tropicale, 1, 56–352. (In French)Google Scholar
  13. Djaman J.A., Abouanou S., Basco L., Koné M. 2004. Limites de l’efficacité de la chloroquine et de la sulfadoxine-pyriméthamine au nord de la ville d’Abidjan (Côte d’Ivoire), étude couplée in vivo/in vitro. Santé, 1, 14–205. (In French)Google Scholar
  14. Fidock D.A., Nomura T., Talley A.K., Cooper R.A., Dzekunov S.M., Ferdig M.T. et al. 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein Pfcrt and evidence for their role in chloroquine resistance. Molecular Cell, 1, 6–861Google Scholar
  15. Frosch A., Venkatesan M., Laufer M.K. 2011. Patterns of chloroquine use and resistance in sub-Saharan Africa: a systematic review of household survey and molecular data. Malaria Journal, 10, 116. DOI: 10.1186/1475-2875-10-116CrossRefGoogle Scholar
  16. Frosch A.E.P., Laufer M.K., Mathanga D.P., Takala-Harrison S., Skarbinski J., Claassen C.W. et al. 2014. Return of widespread chloroquine-sensitive Plasmodium falciparum to Malawi. Journal of Infectious Diseases, 1, 210–1110Google Scholar
  17. Geiger C., Agustar H.K., Compaoré G., Coulibaly B., Sié A., Becher H. et al. 2013. Declining malaria parasite prevalence and trends of asymptomatic parasitaemia in a seasonal transmission setting in north-western Burkina Faso between 2000 and 2009–2012. Malaria Journal, 12, 27. DOI: 10.1186/1475-2875-12-27CrossRefGoogle Scholar
  18. Granado S., Manderson L., Obrist B., Tanner M. 2011. Appropriating “malaria”: local responses to malaria treatment and prevention in Abidjan, Côte d’Ivoire. Medical Anthropology, 1, 30–102Google Scholar
  19. Kiarie W.C., Wangai L., Agola E., Kimani F.T., Hungu C. 2015. Chloroquine sensitivity: diminished prevalence of chloroquineresistant gene marker pfcrt-7613 years after cessation of chloroquine use in Msambweni, Kenya. Malaria Journal, 14, 328. DOI: 10.1186/s12936-015-0850-9CrossRefGoogle Scholar
  20. Kublin J.G., Cortese J.F., Njunju E.M., Mukadam R.A., Wirima J.J., Kazembe P.N. et al. 2003. Reemergence of chloroquinesensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. Journal of Infectious Diseases, 1, 187–1870. DOI: 10.1086/375419Google Scholar
  21. Laufer M.K., Plowe C.V. 2004. Withdrawing antimalarial drugs: impact on parasite resistance and implications for malaria treatment policies. Drug Resistance Updates, 1, 7–279. DOI: 10.1016/j.drup.2004.08.003Google Scholar
  22. Laufer M.K., Takala-Harrison S., Dzinjalamala F.K., Stine O.C., Taylor T.E., Plowe C.V. 2010. Return of chloroquine-susceptible falciparum malaria in Malawi was a reexpansion of diverse susceptible parasites. Journal of Infectious Diseases, 1, 202–801. DOI: 10.1086/655659Google Scholar
  23. Mbogo G.W., Nankoberanyi S., Tukwasibwe S., Baliraine F.N., Nsobya S.L., Conrad M.D. et al. 2014. Temporal changes in prevalence of molecular markers mediating antimalarial drug resistance in a high malaria transmission setting in Uganda. American Journal of Tropical Medicine and Hygiene, 1, 91–54. DOI:10.4269/ajtmh.13-0647Google Scholar
  24. Menan E.I., Yavo W., Oga S.S., Evi J.B., Kiki-Barro P.C., Kassi R.R. et al. 2007. Open radomized study comparing chloroquine and amodiaquine for treatment of uncomplicated Plasmod-ium falciparum malaria in children in Aboisso, Cote d’ Ivoire. Médecine tropicale, 1, 67–309Google Scholar
  25. Ministère de la Santé et de la Lutte contre le SIDA. 2013. Revue des performances du Programme National de Lutte contre le Paludisme. PNLP, Abidjan, Côte d’Ivoire. (In French)Google Scholar
  26. Ministère de la Santé et de la Lutte contre le SIDA. 2015. Plan stratégique national de lutte contre le paludisme 2012–2015 révisé (période replanifiée): Approche stratifiée de mise à échelle des interventions de lutte contre le paludisme en Côte d’Ivoire et consolidation des acquis. PNLP, Abidjan, Côte d’Ivoire. (In French)Google Scholar
  27. Ministère de la Santé et de l’Hygiène Publique. 2007. Arrêté n°24/CAB/MSHP du 12 janvier 2007 portant institution d’un schéma thérapeutique pour traitement du paludisme en Côte d’Ivoire. PNLP, Abidjan, Côte d’Ivoire. (In French)Google Scholar
  28. Ministry of Health. 2015. Malawi Standard Treatment Guidelines (MSTG) 5th Edition 2015. Ministry of Health, Malawi, pp.58Google Scholar
  29. Morris U., Xu W., Msellem M.I., Schwartz A., Abass A., Shakely D. et al. 2015. Characterising temporal trends in asymptomatic Plasmodium infections and transporter polymorphisms during transition from high to low transmission in Zanzibar, 2005–2013. Infection, Genetics and Evolution, 1, 33–110. DOI:10.1016/j.meegid.2015.04.018Google Scholar
  30. Mwai L., Ochong E., Abdirahman A., Kiara S.M., Ward S., Kokwaro G. et al. 2009. Chloroquine resistance before and after its withdrawal in Kenya. Malaria Journal, 1, 8–106. DOI: 10.1186/1475-2875-8-106Google Scholar
  31. Mwanza S., Joshi S., Nambozi M., Chileshe J., Malunga P., Kabuya J-B.B. et al. 2016. The return of chloroquine-susceptible Plas-modium falciparum malaria in Zambia. Malaria Journal, 15, 584. DOI: 10.1186/s12936-016-1637-3CrossRefGoogle Scholar
  32. Ndiaye M., Faye B., Tine R., Ndiaye J.L., Lo A., Abiola A. et al. 2012. Assessment of the molecular marker of Plasmodium falciparum chloroquine resistance (Pfcrt) in Senegal after several years of chloroquine withdrawal. American Journal of Tropical Medicine and Hygiene, 1, 87–640. DOI: 10.4269/ajtmh.2012.11-0709Google Scholar
  33. Nicoulet I., Simon F., Le Bras J. 1987. Apparition de chloroquinoré-sistance à Plasmodium falciparum en Côte-d’Ivoire. Bulletin épidémiologique hebdomadaire, 41, 163. (In French)Google Scholar
  34. Ouattara L., Bla K.B., Assi S.B., Yavo W., Djaman AJ. 2010. PFCRT and DHFR-TS Sequences for Monitoring Drug Resistance in Adzopé Area of Côte d’Ivoire After the Withdrawal of Chloro-quine and Pyrimethamine. Tropical Journal of Pharmaceutical Research, 1, 9–565Google Scholar
  35. Sondo P., Derra K., Tarnagda Z., Nakanabo S.D., Zampa O., Kazienga A. et al. 2015. Dynamic of plasmodium falciparum chloroquine resistance transporter gene Pfcrt K76T mutation five years after withdrawal of chloroquine in Burkina Faso. Pan African Medical Journal, 21, 101CrossRefGoogle Scholar
  36. Trape J.F., Pison G., Preziosi M.P., Enel C., Desgrées du Loû A., De-launay V. et al. 1998. Impact of chloroquine resistance on malaria mortality. Comptes rendus de l’Académie des sciences. Série III, 1, 321–689Google Scholar
  37. Trape J.F. 2001. The public health impact of chloroquine resistance in Africa. American Journal of Tropical Medicine and Hygiene, 64(1–2 Suppl), 12–17CrossRefGoogle Scholar
  38. White N.J., Pukrittayakamee S., Hien T.T., Faiz M.A., Mokuolu O.A., Dondorp A.M. 2014. Malaria. Lancet, 1, 383–723. DOI: 10.1016/S0140-6736(13)60024-0Google Scholar
  39. World Health Organization. 2017. World Malaria Report. Geneva: World Health OrganizationGoogle Scholar
  40. Yavo W., Konate A., Kassi F.K., Djohan V., Angora E.K., Kiki-Barro P.C. et al. 2015. Efficacy and safety of Artesunate-Amodi-aquine versus Artemether-Lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sentinel sites across Côte d’Ivoire. Malaria Research and Treatment, 878132, 8. DOI:10.1155/2015/878132Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Abibatou Konaté
    • 1
    • 2
    Email author
  • Paterne Akpa Gnagne
    • 2
  • Valérie Akoua Bédia-Tanoh
    • 1
    • 2
  • Mireille Amiah-Droh
    • 2
  • Dominique Konan Tano
    • 2
  • Hervé Ignace Eby Menan
    • 1
    • 3
  • William Yavo
    • 1
    • 2
  1. 1.Department of Parasitology, Mycology, Animal Biology and, ZoologyFelix Houphouët-Boigny UniversityAbidjanCôte d’Ivoire
  2. 2.Malaria Research and Control Centre/National Institute of Public Health, AbidjanCôte d’IvoireAbidjanCôte d’Ivoire
  3. 3.Parasitology and Mycology Laboratory of the Diagnosis and Research Centre on AIDS and the others infectious diseasesAbidjanCôte d’Ivoire

Personalised recommendations