Advertisement

Acta Parasitologica

, Volume 63, Issue 4, pp 733–743 | Cite as

Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India

  • Rahul ParasharEmail author
  • Lachhman Das Singla
  • Mayank Gupta
  • Suresh Kumar Sharma
Original Paper

Abstract

The haemato-biochemical indices and oxidative stress markers in horses naturally infected with Trypanosoma evansi were evaluated by analyzing the level of these parameters between T. evansi infected (microscopically positive patent group and PCR positive latent group) and infection free horses. To compare the hemato-biochemical indices and oxidative stress indicators, horses were divided into three categories based on diagnostic test employed and positive results obtained. These included Romanowsky stained slide positive group (Group I; n = 6), PCR positive group (group II; n = 28) and negative control group (group III, n = 30), revealing parasitologically positive patent, molecular positive latent and disease free status of horses. A significant reductions in total ery-throcytes count (TEC, P = 0.01), haemoglobin (Hb, P = 0.01) and packed cell volume (PCV, P = 0.04) was noticed both in group I and group II while significant neutrophilia and lymphocytopenia was observed in group I when compared to negative control group. Substantial increase in creatinine (CRTN, P = 0.032) and gamma glutamyl transferase (GGT, P = 0.012) in group I while significant decrease in glucose (GLU, P = 0.04) and iron (Fe, P = 0.01) were noticed in both group I and group II in comparison to group III. A significant difference in lipid peroxides (LPO, P = 0.01) with highest level in patent group I (15.33 ± 0.53) followed by PCR positive latent group (14.09 ± 1.66) indicates higher lipid peroxidation in erythrocytes and oxidative stress in decreasing order when compared with infection free control horses (9.83 ± 0.97). Catalase (CAT, P = 0.01) was significantly lower in para-sitological (0.82 ± 0.14) and molecular positive cases (1.27 ± 0.35) in comparison to control group (3.43 ± 0.96). The levels of su-peroxide dismutase (SOD, P = 0.01), reduced glutathione (GSH, P = 0.01) and ferric reducing antioxidant power (FRAP, P = 0.01) were significantly lower in parasito-molecular positive cases as compared to infection free control horses. An inverse correlation of RBC count with LPO and GSH and a direct correlation with catalase, SOD and FRAP was revealed. Overall, the observed substantial decreases in the oxidative parameters like catalase CAT, SOD, GSH and FRAP activities with remarkably elevated levels of LPO indicate high exposure of erythrocytes to oxidative damage in T.evansi infected horses.

Keywords

haemato-biochemical parameters latent Oxidative stress parameters patent Trypanosoma evansi trypanosomosis India 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Baky A. A., Salem S.I. 2011. Clinicopathological and cytological studies on naturally infected camels and experimentally infected rats with Trypanosoma evansi. World Applied Sciences Journal, 14, 42–50Google Scholar
  2. Abenga J.N., Anosa V.O. 2007. Serum biochemical changes in experimental gambian trypanosomosis. II. Assessing hepatic and renal dysfunction. Turkish Journal of Veterinary and Animal sciences, 31, 293–296Google Scholar
  3. Adejinmi J.O., Akinboade O.A. 2000. Serum biochemical changes in WAD goats with experimental mixed Trypanosoma brucei and Cowdria ruminantum infections. Tropical Veterinarian, 18, 111–120Google Scholar
  4. Aebi H.E. 1983. Catalase. In: Bergmeyer, H.U., Ed., Methods of enzymatic analysis, Verlag Chemie, Weinhem. 273–286. DOI: 10.1016/B978-0-12-091302-2.50032-3Google Scholar
  5. Akanji M.A., Adeyemi O.S., Oguntoye S.O., Suleiman F. 2009. Psidium guavaja extract reduces trypanosomosis associated lipid peroxidation and raised glutathione concentrations in infected animals. Excli Journal, 8, 148–154Google Scholar
  6. Amanvermez R., Celik C. 2004. Superoxide dismutase, glutathione, vitamin C, total antioxidant and total thiol levels in hydatid cysts. Turkiye Klinikleri Journal of Medical Sciences, 24, pp. 2–13Google Scholar
  7. Anosa V.O. 1988. Haematological and biochemical changes in human and animal trypanosomosis. Part I. Revue d’élevage et de Médecine Vétérinaire des pays Tropicaux, 41, 65–78PubMedGoogle Scholar
  8. Auten R.L., Davis J.M. 2009. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Research, 66, 121–127. DOI: 10.1203/PDR.0b013e3181a9eafbPubMedCrossRefGoogle Scholar
  9. Bal M.S., Sharma A., Ashuma Bath B.K., Kaur P., Singla L.D. 2014. Detection and management of latent infection of Try-panosoma evansi in a cattle herd. Indian Journal of Animal Research, 48, 31–37. DOI: 10.5958/j.0976-0555.48.1.007CrossRefGoogle Scholar
  10. Benzie I.F.F., Strain J.J. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. DOI: 10.1016/S0076-6879 (99)99005-5PubMedCrossRefGoogle Scholar
  11. Brun R., Hecker H., Lun Z., 1998. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phyloge-netic relationship. Veterinary Parasitology, 79, 95–107. DOI: 10.1016/S0304-4017(98)00146-0PubMedCrossRefGoogle Scholar
  12. Bulger E.M., Maier R.V. 2001. Antioxidants in critical illness. Archives of Surgery, 136, 1201–1207. DOI: 10.1001/arch-surg.136.10.1201PubMedCrossRefGoogle Scholar
  13. Cadioli F.A., Marques L.C., Machado R.Z., Alessi A.C., Aquino L.P.C.T., Barnabé P.A. 2006. Experimental Trypanosoma evansi infection in donkeys: hematological, biochemical and histopathological changes. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 749–756. DOI: 10.1590/S0102-09352006000500008CrossRefGoogle Scholar
  14. Chaudhary Z.I., Iqbal J. 2000. Incidence and haematological alterations induced by natural trypanosomiasis in racing dromedary camels. Acta Tropica, 77, 209–213. DOI.org/10.1016/S0001-706X (00)00142-XPubMedCrossRefGoogle Scholar
  15. Chaudhuri S., Varshney J.P., Patra R.C. 2008. Erythrocytic antioxidant defense, lipid peroxides level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Research in Veterinary Science, 85, 120–124. DOI: 10.1016/j.rvsc.2007.09.001PubMedCrossRefGoogle Scholar
  16. Dargie J.D., Murray P.K., Murray M., Grimshaw W.R.T., McIntyre W.I.M. 1979. Bovine trypanosomiasis: the red cell kinetics of Ndama and Zebu cattle infected with Trypanosoma congolense. Parasitology International, 78, 271–286. DOI: 10.1017/S0031182000051143CrossRefGoogle Scholar
  17. De U.K., Dey S., Banerjee P.S., Sahoo M. 2012. Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Tropical Animal Health and Production, 44, 385–8. DOI: 10.1007/s11250-011-9938-6PubMedCrossRefGoogle Scholar
  18. Demerdash F.M., Jebur A.B., Nasr H.M. 2013. Oxidative stress and biochemical perturbations induced by insecticides mixture in rat testes. Journal of Environmental Science and Health, 48, 593–599. DOI: 10.1080/03601234.2013.774998PubMedCrossRefGoogle Scholar
  19. Dimri U., Sharma M.C., Yamdagni A., Ranjan R., Zama M.M.S. 2010. Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Veterinary Parasitology, 168, 318–322. DOI: 10.1016/j.vetpar.2009.11.013PubMedCrossRefGoogle Scholar
  20. Dobson R.J., Dargantes A.P., Mercado R.T., Reid S.A. 2009. Models for Trypanosoma evansi (surra), its control and economic impact on small-hold livestock owners in the Philippines. International Journal for Parasitology, 39, 1115–1123. DOI: 10.1016/j.ijpara.2009.02.013PubMedCrossRefGoogle Scholar
  21. Egbu F.M.I., Ubachukwu P.O., Okoye I.C. 2013. Haematological changes due to bovine fasciolaisis. African Journal of Biotechnology, 12, 1828–1835. DOI: 10.5897/AJB12.2716.CrossRefGoogle Scholar
  22. Esmaeilnejad B., Tavassoli M., Asri-Rezaei S., Dalir-Naghadeh B. 2012. Evaluation of antioxidant status and oxidative stress in sheep naturally infected with Babesia ovis. Veterinary Parasitology, 185, 124–30. DOI: 10.1016/j.vetpar.2011.10.001PubMedCrossRefGoogle Scholar
  23. Eyob E., Matios L. 2013. Review on camel trypanosomosis (surra) due to Trypanosoma evansi: Epidemiology and host response. Journal of Veterinary Medicine and Animal Health, 5, 334–343. DOI. 10.5897/JVMAH2013.0236Google Scholar
  24. Fang Y.Z., Yang S., Wu G. 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879. DOI: 10.1016/S0899-9007(02) 00916-4PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64, 97–112. DOI: 10.1146/annurev.bi.64.070195.000525PubMedCrossRefGoogle Scholar
  26. Gill B.S. 1977. Trypanosomes and trypanosomiases of Indian livestock. Information Division Indian Council of Agricultural Research; New DelhiGoogle Scholar
  27. Gurbay A., Hincal F. 2004. Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug and Chemical Toxicology, 27, 233–42. DOI: 10.1081/DCT-120037504PubMedCrossRefGoogle Scholar
  28. Gutierrez C., Corbera J.A., Juste M.C., Doreste F., Morales I. 2005. An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology, 30, 163–168. DOI: 10.1016/j.vetpar.2005.02.009CrossRefGoogle Scholar
  29. Gutteridge J.M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828PubMedGoogle Scholar
  30. Gutteridge J., Halliwell B. 2000. Free radicals and antioxidants in the year 2000: a historical look to the future. Annals of the New York Academy of Sciences, 899, 136–147. DOI: 10.1111/j.1749-6632.2000.tb06182.xPubMedCrossRefGoogle Scholar
  31. Jatkar P.R., Singh M. 1974. Pathogenesis of anemia in trypanosome infection. I V. Blood glucose studies. Indian Veterinary Journal, 51, 710–714Google Scholar
  32. Kahn C.M., Line S. 2010. The Merck Veterinary Manual, 10th ed. Merck & Co. Inc 2584–89Google Scholar
  33. Kaplowitz N. 2000. Mechanisms of liver cell injury. Journal of Hepatology, 32, 39–47. DOI: 10.1016/S0168-8278(00)80414-6PubMedCrossRefGoogle Scholar
  34. Kumar R., Jain S., Kumar S., Sethi K., Kumar S., Tripathi B. N. 2017. Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: Current and future perspective. Veterinary Parasitology: Regional Studies and Reports, 10, 1–12. DOI: 10.1016/j.vprsr.2017. 06.008Google Scholar
  35. Kurt O., Ok U.Z., Ertan P., Yuksel H. 2002. Antioxidant substances and malaria. Acta Parasitologica Turcica. 26, 108–12Google Scholar
  36. Li M., You T.Z., Zhu, W.Z., Qu J.P., Liu C., Zhao B., et al. 2013. Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. Ecotoxicology, 22, 1241–1254. DOI: 10.1007/s10646-013-1112-7PubMedCrossRefGoogle Scholar
  37. Luckins A.G. 1988. Trypanosoma evansi in Asia. Parasitology Today 4, 137–142. DOI: 10.1016/0169-4758 (88)90188-3PubMedCrossRefGoogle Scholar
  38. Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474PubMedCrossRefGoogle Scholar
  39. Masiga D.K., Smyth A.J., Hayes P., Bromidge T.J., Gibson W.C. 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal of Parasitology, 22, 909–918. DOI: 10.1016/0020-7519(92)90047-OPubMedCrossRefGoogle Scholar
  40. Mates J.M., Perez-Gomez C., De Castro I.N. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry, 32, 595–603. DOI: 10.1016/S0009-9120(99)00075-2PubMedCrossRefGoogle Scholar
  41. Meister A., Anderson M.E. 1983. Glutathione. Annual Review of Biochemistry, 52, 711–760PubMedCrossRefGoogle Scholar
  42. Mijares A., Vivas J., Abad C., Betancourt M., Piñero S., Proverbio F., Marín R., Portillo R. 2010. Trypanosoma evansi: Effect of experimental infection on the osmotic fragility, lipid peroxidation and calcium- ATPase activity of rat red blood cells. Experimental Parasitology, 124, 301–305. DOI: 10.1016/ j.exppara.2009.11.002PubMedCrossRefGoogle Scholar
  43. Murray R.K., Granner D.K., Mayes P.A, Rodwell V.W. 2003. Harper’s Illustrated Biochemistry a Lange Medical Book, 26th ed. The McGraw-Hill Companies, Inc., United States of America, pp. 622–701Google Scholar
  44. Omer O.H., Mousa H.M., Al-Wabel N. 2007. Study on the antioxi-dant status of rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 145, 142–145. DOI: 10. 1016/j.vetpar.2006.11.007PubMedCrossRefGoogle Scholar
  45. Ozden S., Catalgol B., Gezginci-Oktayoglu S., Arda-Pirincci P., Bolkent S., Alpeortunga B. 2009. Methiocarb-induced ox-idative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food and Chemical Toxicology, 47, 1676–1684. DOI: 10.1016/j.fct. 2009.04.018PubMedCrossRefGoogle Scholar
  46. Padmaja K. 2012. Haemato-biochemical studies and therapy of try-panosomosis in camels. Veterinary World, 5, 356–358CrossRefGoogle Scholar
  47. Pamplona R., Costantini D. 2011. Molecular and structural antioxi-dant defenses against oxidative stress in animals. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301, R843–R863. DOI: 10.1152/ajpregu. 00034.2011PubMedCrossRefGoogle Scholar
  48. Pandey V., Nigam R., Jaiswal A.K., Sudan V., Singh R.K., Yadav P.K. 2015. Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Veterinary Parasitology, 212, 118–122. DOI: 10.1016/j.vetpar.2015.07.025PubMedCrossRefGoogle Scholar
  49. Parashar R. 2014. Prevalence of trypanosomiosis, its clinico-haemato-biochemical impact and PCR based detection in buffaloes. MVSc Thesis, DUVASU MathuraGoogle Scholar
  50. Prins H.K., Loos J.A. 1969. Glutathione In: Biochemical Methods in Red Cell Genetics. (Edited by Yunis, J.J.), Academic Press, New York. pp. 115–137Google Scholar
  51. Ranjithkumar M., Kamili N.M., Saxena A., Dan A., Dey S., Raut S.S. 2011. Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Veterinary Parasitology, 180, 349–353. DOI: 10.1016/j.vetpar. 2011.03.029PubMedCrossRefGoogle Scholar
  52. Rehman S., Chandra O., Abdulla M. 1995. Evaluation of malondi-aldehyde as an index of lead damage in rat brain homogenates. Biometals, 8, 275–279PubMedGoogle Scholar
  53. Rezai S.A., Dalir-Naghadeh B. 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata. Veterinary Parasitology, 142: 179–186CrossRefGoogle Scholar
  54. Saker K.E. 2006. Nutrition and immune function. Veterinary Clinics of North America: Small Animal Practice, 36, 1199–1224. DOI: 10.1016/j.cvsm.2006.09.001PubMedCrossRefGoogle Scholar
  55. Saleh M.A., Al-Salahy M.B., Sanousi S.A. 2009. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Veterinary Parasitology, 162, 192–199. DOI: 10.1016/j.vetpar.2009.03.035PubMedCrossRefGoogle Scholar
  56. Sarror D.I. 1976. Plasma copper levels in bovine trypanosomosis. Veterinary Record, 98, pp.196CrossRefGoogle Scholar
  57. SAS. 2002. Statistical Analysis System. User’s Guide. SAS Institute Inc., Cary, USAGoogle Scholar
  58. Sharma A., Singla L.D., Tuli A., Kaur P., Bal M.S. 2015. Detection and assessment of risk factors associated with natural concurrent infection of Trypanosoma evansi and Anaplasma marginale in dairy animals by duplex PCR in eastern Punjab. Tropical Animal Health and Production, 47, 251–257. DOI: 10.1007/s11250-014-0710-6PubMedCrossRefGoogle Scholar
  59. Sharma P., Juyal P.D., Singla L.D., Chachra D., Pawar H. 2012. Comparative evaluation of real time PCR assay with conventional parasitological techniques for diagnosis of Trypanosoma evansi in cattle and buffaloes. Veterinary Parasitology, 190, 375–382. DOI.org/10.1016/j.vetpar.2012.07.005PubMedCrossRefGoogle Scholar
  60. Singh V., Tiwari A.K. 2012. Bovine Surra in India: an update. Ruminant Science, 1, 1–7Google Scholar
  61. Singla L.D., Juyal P.D., Ahuja S.P. 1998. Blood brain barrier status in experimental Trypanosoma evansi infected and levamisole treated cow-calves. Indian Veterinary Journal, 75, 109–12Google Scholar
  62. Singla L.D., Juyal P.D., Roy K.S., Kalra I.S. 1997. Host responses of cow-calves against Trypanosoma evansi infection: Haematopathological study. Journal of Veterinary Parasitology 11, 55–63Google Scholar
  63. Singla L.D., Sharma A., Kaur P., Bal M.S. 2015. Comparative evaluation of agglutination assay with microscopy and polymerase chain reaction for detection of Trypanosoma evansi in bovines of Punjab. Indian Journal of Animal Sciences, 85, 1164–1166Google Scholar
  64. Sivajothi S., Rayulu V.C., Reddy B.S. 2013. Haematological and biochemical changes in experimental Trypanosoma evansi infection in rabbits. Journal of Parasitic Diseases. DOI: 10.1007/s12639-013-0321-6Google Scholar
  65. Sivajothi S., Rayulu V.C., Reddy B.S., Kumari K.N. 2015. Try-panosoma evansi causes thyroxin imbalance with biochemical alterations in wistar rats. Journal of Advanced Veterinary and Animal Research, 2, 205–209. DOI: 10.5455/javar. 2015.b68CrossRefGoogle Scholar
  66. Soulsby E.J.L. 2005. Helminths, Arthropods and Protozoa of Domesticated Animals. 7th Ed. Elsevier a Division of Reed Elsevier India Pvt. Ltd., New Delhi. pp. 734Google Scholar
  67. Spickett C.M., Jerlich A., Panasenko O.M., Arnhold J., Pitt A.R., Stelmaszyñska T., Schaur R.J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochimica Polonica, 47, 889–900PubMedGoogle Scholar
  68. Sumbria D., Singla L.D., Sharma A., Moudgil A.D., Bal M.S. 2014. Equine trypanosomosis in central and western Punjab: Prevalence, haemato-biochemical response and associated risk factors. Acta Tropica, 138, 44–50. DOI: 10.1016/j.actatropica. 2014.06.003PubMedCrossRefGoogle Scholar
  69. Sumbria D., Singla L.D., Sharma A., Bal M.S., Kumar S. 2015. Multiplex PCR for detection of Trypanosoma evansi and Theile-ria equi in equids of Punjab, India. Veterinary Parasitology, 211, 293–99. DOI: 10.1016/j.vetpar.2015.05.018PubMedCrossRefGoogle Scholar
  70. Taiwo V.O., Olaniyi M.O. and Ogunsanmi A.O. 2003. Comparative plasma biochemical changes and susceptibility of erythrocytes to in vitro peroxidation during experimental Trypanosoma congolense and T. brucei infections in sheep. Israel Journal of Veterinary Medicine, 112–117Google Scholar
  71. Takeet M.I., Adeleye A.I., Adebayo O.O., Akande F.A. 2009. Haematology and serum biochemical alteration in stress induced equine theileriosis. A case report. The Scientific World Journal, 4, 19–21. DOI: 10.4314/swj.v4i2.51840Google Scholar
  72. Takeet M.I., Fagbemi B.O. 2009. Haematological, pathological and plasma biochemical changes in rabbits experimentally infected with Trypanosoma congolense. The Scientific World Journal, 4. DOI: 10.4314/swj.v4i2.51843Google Scholar
  73. Weinberg E.D. 1978. Iron and infection. Microbiological Reviews. 42, 45–66PubMedPubMedCentralGoogle Scholar
  74. Wolkmer P., da Silva A.S., Traesel C.K., Paim F.C., Cargnelutti J.F., Pagnoncelli M., Picada M.E., Monteiro S.G., dos Anjos Lopes S.T. 2009. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 165, 41–46. DOI: 10.1016/j.vetpar.2009.06.032PubMedCrossRefGoogle Scholar
  75. Wolkmer P., Schafer da Silva A., Felipetto Cargnelutti J., Machado Costa M., Kist Traesel C., dos Anjos Lopes S., Gonzalez Monteiro S. 2007. Resposta eritropoética de ratos em diferentes graus de parasitemia por Trypanosoma evansi. Ciencia Rural. 37, 1682–1687CrossRefGoogle Scholar
  76. Xing H., Li S., Wang Z., Gao X., Xu S., Wang X. 2012. Oxidative stress response and histopathological changes due to atrazine and chlorpyriphos exposure in common carp. Pesticide Biochemistry and Physiology, 103, 74–80. DOI: 10.1016/j.pestbp.2012.03.007CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Rahul Parashar
    • 1
    Email author
  • Lachhman Das Singla
    • 1
  • Mayank Gupta
    • 2
  • Suresh Kumar Sharma
    • 2
  1. 1.Department of Veterinary Parasitology, College of Veterinary ScienceGuru Angad Dev Veterinary & Animal Sciences UniversityLudhianaIndia
  2. 2.Department of Veterinary Pharmacology & Toxicology, College of Veterinary ScienceGuru Angad Dev Veterinary & Animal Sciences UniversityLudhianaIndia

Personalised recommendations