Acta Parasitologica

, Volume 63, Issue 3, pp 563–571 | Cite as

Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles

  • Bijan EsmaeilnejadEmail author
  • Awat Samiei
  • Yousef Mirzaei
  • Farhad Farhang-Pajuh


Drag resistance in helminth parasites has incurred several difficulties to livestock industry and ranked among the top public health concerns. Therefore, seeking for new agents to control parasites is an urgent strategy. In the recent years, metallic nanoparticles have been considerably evaluated for anthelmintic effects. The current research was conducted to assess possible anthelmintic impacts of zinc oxide nanoparticles (ZnO-NPs) on a prevalent gastrointestinal nematode, H. contortus. Moreover, several biomarkers of oxidative/nitrosative stress and DNA damage were measured. Various concentrations of the nanoparticle were prepared and incubated with the worms for 24 hours. The parasite mobility, mortality rate, antioxidant enzymes activities (SOD, Catalase and GSH-Px), lipid peroxidation, total antioxidant status as well as nitric oxide (NO) contents and DNA damage were determined. ZnO-NPs exerted significant wormicidal effects via induction of oxidative/nitrosative stress and DNA damage. Conclusively, ZnO-NPs can be utilized as a novel and potential agent to control and treatment of helminth parasitic infections.


H. contortus nanoparticles oxidative stress DNA damage nitric oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achi Y., Zinsstag J., Yao K., Yeo N., Dorchies P., Jacquiet P. 2003. Host specificity of Haemonchus spp. for domestic ruminants in the savanna in northern Ivory Coast. Veterinary Parasitology, 116, 151–158. DOI: 10.1016/S0304-4017(03)00258-9PubMedCrossRefGoogle Scholar
  2. Adeyemi O.S., Faniyan T.O. 2014. Antioxidant status of rats administered silver nanoparticles orally. Journal of Taibah University Medical Sciences, 9, 182–186. DOI: 10.1016/j.jtumed.2014.03.002CrossRefGoogle Scholar
  3. Adeyemi O.S., Whiteley C.G. 2013. Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation. International Journal of Biological Macromolecules, 62, 450–56. DOI: 10.1016/j.ijbiomac.2013.09.008PubMedCrossRefGoogle Scholar
  4. Al-Quaisy H., Al-Zubaidy A., Altaif K., Makkawi T. 1987. The pathogenicity of haemonchosis in sheep and goats in Iraq: 1. Clinical, parasitological and haematological findings. Veterinary Parasitology, 24, 221–228. DOI: 10.1016/0304-4017(87)90043-4PubMedCrossRefGoogle Scholar
  5. Aycicek A., Kocyigit A., Erel O., Senturk H. 2008. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants. Jornal de Pediatria, 84, 141–146. DOI: 10.2223/JPED.1765PubMedCrossRefGoogle Scholar
  6. Azqueta A., Meier S., Priestley C., Gutzkow K.B., Brunborg G., Sallette J., Soussaline F., Collins A. 2011. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis, 26, 393–399. DOI: 10.1093/mutage/geq105PubMedCrossRefGoogle Scholar
  7. Ben Smith A., Lammas D., Behnke J. 2002. Effect of oxygen radicals and differential expression of catalase and superoxide dismutase in adult Heligmosomoides polygyrus during primary infections in mice with differing response phenotypes. Parasite Immunology, 24, 119–129. DOI: 10.1046/j.1365-3024.2002.00445.xPubMedCrossRefGoogle Scholar
  8. Bhardwaj R., Saudagar P., Dubey V.K. 2012. Nanobiosciences: a contemporary approach in antiparasitic drugs. Molecular and Cellular Pharmacology, 4, 97–103Google Scholar
  9. Buege J.A., Aust S.D. 1978. Microsomal lipid peroxidation, In: Methods in enzymology. Elsevier, 52, 302–310. DOI: 10.1016/S0076-6879(78)52032-6PubMedCrossRefGoogle Scholar
  10. Butkus M.A., Labare M.P, Starke J.A., Moon K., Talbot M. 2004. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Applied and Environmental Microbiology, 70. 2848–2853. DOI: 10.1128/AEM.70.5.2848-2853.2004PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chiumiento L., Bruschi F. 2009. Enzymatic antioxidant systems in helminth parasites. Parasitology Research, 105, 593. DOI: 10.1007/s00436-009-1483-0PubMedCrossRefGoogle Scholar
  12. Cohen K., Nyska A. 2002. Oxidation of biological system: oxidative stress phenomena, antioxidants, redox reactions and method for their quantification. Toxicologic Pathology, 30, 620–650. DOI: 10.1080/01926230290166724CrossRefGoogle Scholar
  13. Ding A.H., Nathan C.F., Stuehr D.J. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. The Journal of Immunology, 141, 2407–2412PubMedGoogle Scholar
  14. Dorostkar R., Ghalavand M., Nazarizadeh A., Tat M., Hashemzadeh M.S. 2017. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. International Nano Letters, 7, 157–164. DOI: 10.1007/s40089-016-0198-3CrossRefGoogle Scholar
  15. Elsami A., Rahbari S., Meydani M. 1981. Cestodes and trematodes of wild sheep, Ovis ammon orientalis, and goitered gazelle, Gazella subgutturosa, in Iran. Veterinary Parasitology, 8, 99–101. DOI: 10.1016/0304-4017(81)90023-6CrossRefGoogle Scholar
  16. Eslami A., Fakhrzadegan F. 1972. Les Nématodes parasites du tube digestif des bovins en Iran. Revue D’élevage et de Médecine Vétérinaire des Pays Tropicaux, 25, 527–529. DOI: 10.1912/remvt.7774CrossRefGoogle Scholar
  17. Eslami A., Fazy A. 1975. Study on gastrointestinal helminths of goats in Iran (in persian with English summary). Journal of Tehran Veterinary Faculty, 31, 68Google Scholar
  18. Eslami A., Nabavi L. 1976. Species of gastro-intestinal nematodes of sheep from Iran. Bulletin de la Société de Pathologie Exotique, 69, 92–95Google Scholar
  19. Eyambe G.S., Goven A.J., Fitzpatrick L., Venables B.J., Cooper E.L. 1991. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Laboratory Animals, 25, 61–67. DOI: 10.1258/002367791780808095PubMedCrossRefGoogle Scholar
  20. Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41, 8484–8490CrossRefGoogle Scholar
  21. Ghiselli A., Serafini M., Natella F., Scaccini C. 2001. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data, In: Bio-Assays for Oxidative Stress Status. Elsevier, 219–227. DOI: 10.1016/B978-0-444-50957-4.50035-1CrossRefGoogle Scholar
  22. Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. 1982. Analysis ofnitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126, 131–138. DOI: 10.1016/0003-2697(82)90118-XPubMedCrossRefGoogle Scholar
  23. Hadas E., Stankiewicz M. 1998. Superoxide dismutase and total antioxidant status of larvae and adults of Trichostrongylus colubriformis, Haemonchus contortus and Ostertagia circumcincta. Parasitology Research, 84, 646–650. DOI: 10.1007/s004360050464PubMedCrossRefGoogle Scholar
  24. Hakimzadegan M., Khosroshahi M.K. 2013. Prevalence of Abomasal Nematodes in slaughtered Goats at industrial Urmia slaughterhouse, West Azerbaijan province, Northwest of Iran. Journal of Animal and Poultry Sciences, 2, 120–124Google Scholar
  25. Henkle-Dührsen K., Kampkötter A. 2001. Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology, 114, 129–142. DOI: 10.1016/S0166-6851(01)00252-3PubMedCrossRefGoogle Scholar
  26. Hu C., Li M., Cui Y., Li D., Chen J., Yang L. 2010. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42, 586–591. DOI: 10.1016/j.soilbio.2009.12.007CrossRefGoogle Scholar
  27. Javanbakht J., Hosseini E., Mousavi S., Hassan M.A., Kazeroni S.S., Khaki F., et al. 2014. Evaluation of two Iranian domestic ovine breeds for their pathological findings to gastrointestinal infection of Haemonchus contortus. Journal of Parasitic Diseases, 38, 311–316. DOI: 10.1007/s12639-013-0241-5PubMedCrossRefGoogle Scholar
  28. Jayaseelan C., Rahuman A.A., Rajakumar G., Kirthi A.V., Santhoshkumar T., Marimuthu S., et al. 2011. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitology Research, 109, 185–194. DOI: 10.1007/s00436-010-2242-yPubMedCrossRefGoogle Scholar
  29. Kalantari H., Rezaei M., Mahdavinia M., Jahangirnejad R., Varnaseri G. 2012. Determination of the Mutagenicity Potential of Sankol Herbal Medicine by Single Cell Gel Electrophoresis in Rat Hepatocytes in Comparison With H2O2. Jundishapur Journal of Natural Pharmaceutical Products, 7, 123. DOI: 10.5812/jjnpp.5480PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kamalzadeh A., Rajabbaigy M., Kiasat A. 2008. Livestock production systems and trends in livestock industry in Iran. Journal of agriculture and social sciences, 4, 183–188.Google Scholar
  31. Khan Y.A., Singh B.R., Ullah R., Shoeb M., Naqvi A.H., Abidi S.M. 2015. Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PloS one 10. e0133086. DOI: 10.1371/journal.pone.0133086PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kotze A., McClure S. 2001. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. International Journal for Parasitology, 31, 1563–1571. DOI: 10.1016/S0020-7519(01)00303-4PubMedCrossRefGoogle Scholar
  33. McCord J.M., Fridovich I. 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055PubMedGoogle Scholar
  34. Mohebali M., Rezayat M., Gilani K., Sarkar S., Akhoundi B., Esmaeili J., et al. 2015. Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an in vitro and in vivo study. DARU Journal of Pharmaceutical Sciences, 17, 285–289Google Scholar
  35. Nair S., Sasidharan A., Rani V.D., Menon D., Nair S., Manzoor K., Raina S. 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. Journal of Materials Science: Materials in Medicine, 20, 235. DOI: 10.1007/sl0856-008-3548-5Google Scholar
  36. Nazarizadeh A., Asri-Rezaie S. 2016. Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. American Association of Pharmaceutical Scientists, 17, 834–843. DOI: 10.1208/s12249-015-0405-yGoogle Scholar
  37. Önder Z., Yildirim A., Inci A., Düzlü Ö., Çılog̒lu A. 2016. Molecular Prevalence, Phylogenetic Characterization and Benzimidazole Resistance of Haemonchus contortus from Sheep. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 22. 93–99Google Scholar
  38. Preet S., Tomar R.S. 2017. Anthelmintic effect of biofabricated silver nanoparticles using Ziziphus jujuba leaf extract on nutritional status of Haemonchus contortus. Small Ruminant Research, 154, 45–51. DOI: 10.1016/j.smallrumres.2017.07.002CrossRefGoogle Scholar
  39. Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 184–192. DOI: 10.1016/j.nano.2010.10.001CrossRefGoogle Scholar
  40. Rahimi M.T., Ahmadpour E., Esboei B.R., Spotin A., Koshki M.H.K., Alizadeh A., et al. 2015. Scolicidal activity of biosynthesized silver nanoparticles against Echinococcus granulosus protoscolices. International Journal of Surgery, 19, 128–133. DOI: 10.1016/j.ijsu.2015.05.043PubMedCrossRefGoogle Scholar
  41. Rashid M.M.O., Ferdous J., Banik S., Islam M.R., Uddin A.M., Robel F.N. 2016. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complementary and Alternative Medicine, 16, 242. DOI: 10.1186/S12906-016-1219-5PubMedPubMedCentralCrossRefGoogle Scholar
  42. Reinecke S., Reinecke A. 2004. The comet assay as biomarker of heavy metal genotoxicity in earthworms. Archives of Environmental Contamination and Toxicology, 46, 208–215. DOI: 10.1007/s00244-003-2253-0PubMedGoogle Scholar
  43. Singh N.P, McCoy M.T., Tice R.R., Schneider E.L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191. DOI: 10.1016/0014-4827(88)90265-0PubMedCrossRefGoogle Scholar
  44. Skerman K., Shahlapour A., Eslami A., Eliazian M. 1970. Observations on the incidence, epidemiology, control and economic importance of gastro intestinal parasites of sheep and goats in Iran. Archives of Razi Institute, 22, 187–196Google Scholar
  45. Soflaei S., Dalimi A., Ghaffarifar F., Shakibaie M., Shahverdi A.R., Shafiepour M. 2012. In vitro antiparasitic and apoptotic effects of antimony sulfide nanoparticles on Leishmania infantum. Journal of Parasitology Research, 2012, 2012:756568. DOI: 10.1155/2012/756568PubMedPubMedCentralCrossRefGoogle Scholar
  46. Soneja A., Drews M., Malinski T. 2005. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacological Reports, 57, 108Google Scholar
  47. Tiwari R., Verma A.K., Chakraborty S., Dhama K., Singh S.V. 2014. Neem (Azadirachta indica) and its potential for safeguarding health of animals and humans: A review. Journal of Biological Sciences, 14, 110. DOI: 10.3923/jbs.2014.110.123CrossRefGoogle Scholar
  48. Tomar R., Preet S. 2016. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. Journal of helminthology, 91, 454–461. DOI: 10.1017/S0022149X16000444PubMedCrossRefGoogle Scholar
  49. Torabi N., Mohebali M., Shahverdi A.R., Rezayat S.M., Edrissian GH., Esmaeili J., Charehdar S. 2011. Nanogold for the treatment of zoonotic cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an animal trial with methanol extract of Eucalyptus camaldulensis. Journal of Pharmaceutical Sciences, 113–116. DOI: 10.13140/2.1.4561.9840Google Scholar
  50. Vandebriel R.J., De Jong W.H. 2012. Areview of mammalian toxicity of ZnO nanoparticles. Nanotechnol, Science and Applications, 5, 61. DOI: 10.2147/NSA.S23932CrossRefGoogle Scholar
  51. Wang H., Wick R.L., Xing B. 2009. Toxicity of nanoparticulate and bulk ZnO, Al 2 O 3 and TiO 2 to the nematode Caenorhabditis elegans. Environmental Pollution, 157, 1171–1177. DOI: 10.1016/j.envpol.2008.11.004PubMedCrossRefGoogle Scholar
  52. Wedrychowicz H. 2015. Antiparasitic DNA vaccines in 21st century. Acta Parasitologica 60, 179–189. DOI: 10.1515/ap-2015-0026PubMedCrossRefGoogle Scholar
  53. Yan R., Wang J., Xu L., Song X., Li X. 2014. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats. Acta Parasitologica, 59, 698–709. DOI: 10.2478/s11686-014-0298-zPubMedCrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Bijan Esmaeilnejad
    • 1
    Email author
  • Awat Samiei
    • 2
  • Yousef Mirzaei
    • 2
    • 3
  • Farhad Farhang-Pajuh
    • 4
    • 5
  1. 1.Department of Pathobiology, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
  2. 2.Faculty of Veterinary MedicineUrmia UniversityUrmiaIran
  3. 3.Department of Biology, Faculty of SciencesSoran UniversitySoranIraq
  4. 4.Faculty of Veterinary MedicineShahid Chamran University of AhvazIran
  5. 5.Central Laboratory of Urmia UniversityUrmiaIran

Personalised recommendations