Advertisement

Acta Parasitologica

, Volume 63, Issue 3, pp 504–514 | Cite as

Systemic oxidative stress in Suffolk and Santa Ines sheep experimentally infected with Haemonchus contortus

  • Lillian BaptistiolliEmail author
  • Luis Gustavo Narciso
  • Breno Fernando Martins de Almeida
  • Anelise Maria Bosco
  • Jucilene Conceição de Souza
  • Rafaela Beatriz Pintor Torrecilha
  • Priscila Préve Pereira
  • Renata Nogueira Figueiredo
  • José Fernando Garcia
  • Carlos Noriyuki Kaneto
  • Paulo César Ciarlini
Article

Abstract

The mechanisms responsible for the imbalance between oxidants and antioxidants in sheep infected with Haemonchus contortus are not well established. This study aimed to prove the hypothesis that oxidative stress occurring during infection by H. contortus varies according to breed, and that the parasite burden correlates with hypoalbuminaemia and anaemia. Thus, after deworming and confirming the absence of infection, two different sheep breeds, Suffolk (n = 15) and Santa Ines (n = 22), were orally inoculated with a single dose of 5,000 L3 of H. contortus. The egg counts per gram of faeces (EPG), packed cell volume (PCV) and concentrations of several plasma markers of oxidative stress (lipid peroxidation, albumin, uric acid, total bilirubin, total antioxidant capacity [TAC], total oxidant concentration [TOC] and the oxidative stress index [OSI]) were quantified before (control group) and during the experimental infection (28, 34 and 42 days post-inoculation). In both breeds, TOC increased at 28 days and TAC increased at 42 days. In Suffolk sheep, there was a positive correlation of EPG with oxidant components (28 days) and a negative correlation of EPG with PCV (42 days). In Santa Ines sheep, there was a positive correlation of EPG with bilirubin (r = 0.492; p = 0.020). H. contortus infection caused oxidative stress, which varied according to the breed. Parasite burden was not associated with hypoalbuminaemia, whereas there was a negative correlation with PCV. This research provides the first evidence that the antioxidant status contributes more to the resilience to H. contortus in Santa Ines sheep compared to Suffolk sheep.

Keywords

Antioxidant status gastrointestinal parasite Haemonchosis lamb lipid peroxidation oxidative stress index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida B.F.M., Narciso L.G., Melo L.M., Preve P.P., Bosco A.M., Lima V.M.F., et al. 2013. Leishmaniasis causes oxidative stress and alteration of oxidative metabolism and viability of neutrophils in dogs. Veterinary Journal, 198, 599–605. DOI: 10.1016/J.TVJL.2013.08.024CrossRefGoogle Scholar
  2. Amarante A.F.T., Sales R.O. 2007. Controle de endoparasitoses dos ovinos: uma revisão. Revista Brasileira de Higiene e Sanidade Animal, 1, 14–36. DOI: HTTP://DX.DOI.ORG/10.5935/1981-2965.20070007CrossRefGoogle Scholar
  3. Amarante A.F.T., Bricarello P.A., Huntley J.F., Mazzolin L.P., Gomes J.C. 2005. Relationship of abomasal histology and parasite-specific immunoglobulin A with the resistance to Haemonchus contortus infection in three breeds of sheep. Veterinary Parasitology, 128, 99–107. DOI:10.1016/JVETPAR.2004.11.021CrossRefGoogle Scholar
  4. Amarante A.F.T., Bricarello P.A., Rocha R.A., Gennari S.M. 2004. Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology, 120, 91–106. DOI:10.1016/JVETPAR.2003.12.004CrossRefGoogle Scholar
  5. Ames B.N., Cathcart R., Schwiers E., Hochstein P. 1981. Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences, 78, 6858–6862. DOI: 10.1073/PNAS.78.11.6858CrossRefGoogle Scholar
  6. Aycicek A., Erel O., Kocyigit A.. 2005. Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers. Pediatrics International, 47, 635–639. DOI: 10.1111/J.1442-200X.2005.02137.XCrossRefGoogle Scholar
  7. Balzan A., Machado G., Bottari N.B., Volpato A., Grosskopf R., Boito J.P., et al. 2016. Pre- and post-partum serie biochemical variables of Lacaune ewes naturally infected by gastrointestinal parasites. Comparative Clinical Pathology, 25. 815–823. DOI: 10.1007/S00580-016-2268-3CrossRefGoogle Scholar
  8. Bricarello P.A., Gennari S.M., Oliveira-Sequeira T.C.G, Vaz C.M.S.L., De Gonçalves I.G., Echevarria F.A.M. 2002. Response of Corriedale and Crioula Lanada sheep to artificial primary infection with Haemonchus contortus. Veterinary Research Communications, 26, 447–457. DOI: 10.1023/A1020538424876CrossRefGoogle Scholar
  9. Bricarello P.A., Gennari S.M., Oliveira-Sequeira T.C.G., Vaz C.M.S.L., Gonçalves De Gonçalves I., Echevarria F.A.M. 2004. Worm burden and immunological responses in Corriedale and Crioula Lanada sheep following natural infection with Haemonchus contortus. Small Ruminant Research, 51, 75–83. DOI: 10.1016/S0921-4488(03)00188-3CrossRefGoogle Scholar
  10. Burke J.M., Miller J.E., Mosjidis J.A., Terrill T.H. 2012. Use of a mixed Sericea lespedeza and grass pasture system for control of gastrointestinal nematodes in lambs and kids. Veterinary Parasitology, 186, 328–336. DOI: 10.1016/J.VETPAR2011.11.074CrossRefGoogle Scholar
  11. Burton G.J., Jauniaux E. 2011. Oxidative stress. Best Practice & Research Clinical Obstetrics & Gynaecology, 25, 287–299. DOI: 10.1016/S1369-5274(99)80033-2CrossRefGoogle Scholar
  12. Camargo E. V., dos Anjos Lopes S.T., Costa M.M., Paim F., Barbosa C.S., Leal M.L.R. 2010. Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. Journal of Animal Physiology and Animal Nutrition, 94, e1–e6. DOI: 10.1111/J.1439-0396.2010.00986.XCrossRefGoogle Scholar
  13. Celi P. 2010. The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 39, 348–363. DOI: 10.1590/S1516-35982010001300038CrossRefGoogle Scholar
  14. Ciarlini P.C., Ciarlini L.D.R.P, Alencar N.X., Hohayagawa A., Rodrigues C.F.C. 2002. Metabolismo oxidativo de neutrófilos em ovelhas naturalmente infectadas por nematódeos gastrintestinais e correlação entre nível sérico de Cortisol e carga parasitária. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 54, 242–247. DOI: 10.1590/S0102-09352002000300004CrossRefGoogle Scholar
  15. Dimitrijevic B., Borozan S., Katic-Radivojevic S., Stojanovic S. 2012. Effects of infection intensity with Strongyloides papillosus and albendazole treatment on development of oxidative/nitrosative stress in sheep. Veterinary parasitology, 186. 364–375. DOI: 10.2298/AVB1306581DCrossRefGoogle Scholar
  16. Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38, 1103–1111. DOI: DOI 10.1016/J.CLINBIOCHEM.2005.08.008CrossRefGoogle Scholar
  17. Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37, 277–285. DOI: 10.1016/J.CLINBIOCHEM.2003.11.015CrossRefGoogle Scholar
  18. Fausto G.C., Pivoto F.L., Costa M.M., Lopes S.T.D.A., França R.T., Molento M.B., et al. 2014. Protein profile of lambs experimentally infected with Haemonchus contortus and supplemented with selenium and copper. Parasites and Vectors, 7. 355. DOI: 10.1186/1756-3305-7-355CrossRefGoogle Scholar
  19. Feitosa F.L.F. 2014. (3 Ed) Semiologia Veterinária. A arte do diagnóstico: cães, gatos, eqüinos, ruminantes e silvestres. Editora Roca, São Paulo, Basil, pp.754Google Scholar
  20. Gordon H.M., Whitlock H.V. 1939. A new technique for counting nematode eggs in sheep faeces. Journal of the Council for Scientific and Industrial Research. 12, 50–52.Google Scholar
  21. Grosskopf H.M., Grosskopf R.K., Biazus A.H., Leal M.L.R., Bottari N.B., Alves M.S., et al. 2017. Supplementation with copper edetate in control of Haemonchus contortus of sheep, and its effect on cholinesterase’s and superoxide dismutase activities. Experimental Parasitology, 173, 34–41. DOI: 10.1016/J.EXPPARA.2016.12.011CrossRefGoogle Scholar
  22. Hadas E., Stankiewicz M. 1998. Superoxide dismutase and total antioxidant status of larvae and adults of Trichostrongylus colubriformis, Haemonchus contortus and Ostertagia circumcincta. Parasitology Research, 84, 646–650. DOI: 10.1007/S004360050464CrossRefGoogle Scholar
  23. Kaneko J.J., Harvey J.W., Brass M.L. 2008. (6 Ed). Clinical Biochemistry of Domestic Animals. Academic press, 928Google Scholar
  24. Lange K.C., Olcott D.D., Miller J.E., Mosjidis J.A., Terrill T.H., Burke J.M., et al. 2006. Effect of Sericea lespedeza (Lespedeza cuneata) fed as hay, on natural and experimental Haemonchus contortus infections in lambs. Veterinary Parasitology, 141. 273–278. DOI: 10.1016/JVETPAR2006.06.001CrossRefGoogle Scholar
  25. Lau C.S., Carrier D.J., Howard L.R., Lay J.O., Archambault J.A., Clausen E.C. 2004. Extraction of antioxidant compounds from energy crops. Applied Biochemistry and Biotechnology, 114, 569–583. DOI: 10.1385/ABAB:114:l-3:569CrossRefGoogle Scholar
  26. Le Jambre L.F. 1983. Pre-mating barriers in hybrid Haemonchus. International Journal for Parasitology, 13, 371–375. DOI: 10.1016/S0020-7519(83)80043-5CrossRefGoogle Scholar
  27. Leal M.L. do R., Pivoto F.L., Fausto G.C., Aires A.R., Grando T.H., Roos D.H., et al. 2014. Copper and selenium: Auxiliary measure to control infection by Haemonchus contortus in lambs. Experimental Parasitology, 144, 39–43. DOI: 10.1016/J.EXPPARA.2014.06.005CrossRefGoogle Scholar
  28. Leal M.L.D.R., De Camargo E.V, Henrique Ross D., Molento M.B., Dos Anjos Lopes S.T., Da Rocha J.B.T. 2010. Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. Veterinary Research Communications, 34, 549–555. DOI: 10.1007/S11259-010-9426-XCrossRefGoogle Scholar
  29. Lees M.S., Robinson N.A., Ingham A.B., Kotze A.C., Piedrafita D.M. 2011. Dual oxidase 2 and glutathione peroxidase gene expression are elevated in hyperimmunised sheep challenged with Haemonchus contortus. Veterinary Parasitology, 179, 113–122. DOI: 10.1016/JVETPAR.2011.02.013CrossRefGoogle Scholar
  30. Lightbody J.H., Stevenson L.M., Jackson F., Donaldson K., Jones D.G. 2001. Comparative aspects of plasma antioxidant status in sheep and goats, and the influence of experimental abomasal nematode infection. Journal of Comparative Pathology, 124, 192–199. DOI: 10.1053/JCPA.2000.0453CrossRefGoogle Scholar
  31. Machado V., Da Silva A.S., Schafer A.S., Aires A.R., Tonin A.A., Oliveira C.B., et al. 2014. Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus. Pathology-Research and Practice, 210, 812–817. DOI: 10.1016/J.PRP.2014.09.006CrossRefGoogle Scholar
  32. Mavrot F., Hertzberg H., Torgerson P. 2015. Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasites & Vectors, 8, 557. DOI: 10.1186/S13071-015-1164-ZCrossRefGoogle Scholar
  33. Neuzil J., Stocker R. 1993. Bilirubin attenuates radical-mediated damage to serum albumin. Federation of European Biochemical Societies Letters, 331, 281–284. DOI: 10.1016/0014-5793(93)80353-VCrossRefGoogle Scholar
  34. Nicolodi P.R.S.J., Camargo E.V., Zeni D., Rocha R.X., Cyrillo F.C., Souza F.N., et al. 2010. Perfil proteico e metabolismo oxidativo de cordeiros experimentalmente infectados pelo Haemonchus contortus e suplementados com selênio e vitamina E. Ciência Rural, 40, 561–567. DOI: 10.1590/S0103-84782010000300010CrossRefGoogle Scholar
  35. Peng F., Yang Y., Liu J., Jiang Y, Zhu C., Deng X., etal. 2012. Low antioxidant status of serum uric acid, bilirubin and albumin in patients with neuromyelitis optica. European Journal of Neurology. 19, 277–283. DOI: 10.1111/J.1468-1331.2011.03488.XCrossRefGoogle Scholar
  36. Pentón-Rol G., Cervantes-Llanos M., Martínez-Sánchez G., Cabrera-Gómez J.A., Valenzuela-Silva C.M., Ramírez-Nuñez O., et al. 2009. TNF-alpha and IL-10 downregulation and marked oxidative stress in Neuromyelitis Optica. Journal of inflammation, 6, 18. DOI: 10.1186/1476-9255-6-18CrossRefGoogle Scholar
  37. Reiniger R.C.P, de Castro L. L. D., Benavides M. V., Berne M.E.A. 2017. Can Haemonchusplacei-primary infected naive lambs withstand Haemonchus contortus infections? Research in Veterinary Science, 114, 136–142. DOI: 10.1016/J.RVSC.2017.02.017CrossRefGoogle Scholar
  38. Roberts F., O’Sullivan P. 1950. Methods for egg counts and larval cultures for strongyles infesting the gastro-intestinal tract of cattle. Australian Journal of Agricultural Research, 1, 99–102. DOI: 10.1071/AR9500099CrossRefGoogle Scholar
  39. Roeber F., Jex A.R., Gasser R.B. 2013. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance — An Australian perspective. Parasites & Vectors, 6, 153. DOI: 10.1186/1756-3305-6-153CrossRefGoogle Scholar
  40. Sallé G., Moreno C., Boitard S., Ruesche J., Tircazes-Secula A., Bouvier F., et al. 2014. Functional investigation of a QTL affecting resistance to Haemonchus contortus in sheep. Veterinary Research, 45, 68. DOI: 10.1186/1297-9716-45-68Google Scholar
  41. Taylor M.A., Coop R.L., Wall R.L. (4 Ed) 2017. Parasitologia Veterinária, Grupo Gen-Guanabara Koogan, Rio de Janeiro, Brasil, pp. 241Google Scholar
  42. Ueno H., Gonçalves P.C. (4 Ed) 1998. Manual para diagnóstico das helmintoses de ruminantes, Japan International Cooperation Agency, Tokyo, Japan, pp. 143Google Scholar
  43. Waller P.J., Bernes G., Rudby-Martin L., Ljungström B.L., Rydzik A. 2004. Evaluation of copper supplementation to control Haemonchus contortus infections of sheep in Sweden. Acta Veterinaria Scandinavica, 45, 149–160. DOI: 10.1186/1751-0147-45-149CrossRefGoogle Scholar
  44. Weiss J.D., Wardrop K.J. (6 Ed). 2010. Schalm’s veterinary hematology, Wiley-Blackwell, Singapore, USA, pp.1206. DOI: 10.1007/S13398-014-0173-7.2Google Scholar
  45. Wolkmer P., da Silva A.S., Traesel C.K., Paim F.C., Cargnelutti J.F., Pagnoncelli M., et al. 2009. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 165, 41–46. DOI: 10.1016/J.VETPAR.2009.06.032CrossRefGoogle Scholar
  46. Yacob H.T., Mistre C., Adem A.H., Basu A.K. 2009. Parasitological and clinical responses of lambs experimentally infected with Haemonchus contortus (L3) with and without ivermectin treatment. Veterinary Parasitology, 166, 119–123. DOI: 10.1016/J.VETPAR.2009.07.038CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Lillian Baptistiolli
    • 1
    Email author
  • Luis Gustavo Narciso
    • 1
  • Breno Fernando Martins de Almeida
    • 1
  • Anelise Maria Bosco
    • 1
  • Jucilene Conceição de Souza
    • 1
  • Rafaela Beatriz Pintor Torrecilha
    • 2
  • Priscila Préve Pereira
    • 1
  • Renata Nogueira Figueiredo
    • 1
  • José Fernando Garcia
    • 2
  • Carlos Noriyuki Kaneto
    • 2
  • Paulo César Ciarlini
    • 1
  1. 1.Department of Veterinary Medicine, Surgery and Animal ReproductionSão Paulo State UniversityAraçatubaBrazil
  2. 2.Department of Support, Production and Animal HealthSão Paulo State UniversityAraçatubaBrazil

Personalised recommendations