Advertisement

Acta Parasitologica

, Volume 62, Issue 4, pp 717–727 | Cite as

Oxidative stress and cytotoxicity elicited lipid peroxidation in hemocytes of Bombyx mori larva infested with dipteran parasitoid, Exorista bombycis

  • Makwana Pooja
  • Appukuttan Nair R. PradeepEmail author
  • Shambhavi P. Hungund
  • Chandrashekhar Sagar
  • Kangayam M. Ponnuvel
  • Arvind K. Awasthi
  • Kanika Trivedy
Article

Abstract

Parasitization of silkworm, Bombyx mori by invasive larva of dipteran parasitoid Exorista bombycis caused upto 20% revenue loss in sericulture. The parasitism was successful by suppressing host immune system however mechanism of immune suppression induced by E. bombycis is unknown which is unravelled here. The infestation induced cytotoxic symptoms in host hemocytes, such as vacuolated cytoplasm, porous plasma membrane, indented nuclei with condensed chromatin and dilated RER. One of the markers of necrosis is cell permeabilization, which can be measured as released lactate dehydrogenase (LDH). LDH level showed significantly (P<0.01) high release into extracellular medium in vitro after exposure of hemocytes to parasitoid larval tissue protein compared with control revealing membrane permeability and loss of cell integrity. At five minutes after exposure, cytotoxicity was 43% and was increased to 99% at 3h. The cytotoxicity is signalled by increased content of hydrogen peroxide (H2O2) causing lipid peroxidation followed by porosity in plasma membrane. A test for lipid peroxidation by measurement of lipid peroxidation breakdown product, malondialdehyde (MDA) revealed significant increase in peroxidation from one to 24 h post-invasion, with maximum at 12 h (P<0.008). Level of reactive oxygen species measured as H2O2 production increased from 6 to 12 h post-invasion and continued to increase significantly (P<0.03) reaching maximum at 48 h. These observations reveal that dipteran endoparasitoid invasion induced H2O2 production in the hemocytes causing cytotoxicity, lipid peroxidation and membrane porosity that suppressed both humoral- and cell- mediated immune responses of hemocytes in B. mori.

Keywords

Bombyx mori cytotoxicity by ROS dipteran parasitoid lipid peroxidation immune suppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anitha J., Pradeep A.R., Sivaprasad V. 2014. Upregulation of Atg5 and AIF gene expression in synchronization with programmed cellular death events in integumental epithelium of Bombyx mori induced by a dipteran parasitoid infection. Bulletin of Entomological Research, 104, 794–780. DOI: http://dx.doi.org/10.1017/S0007485314000686CrossRefGoogle Scholar
  2. Asgari S., Rivers D. B. 2011. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annual Review of Entomology, 56, 313–335CrossRefGoogle Scholar
  3. Asgari S., Zhang G., Zareie R., Schmidt O. 2003. A serin proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 33, 1017–1024CrossRefGoogle Scholar
  4. Ayala A., Muñoz M.F., Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondi-aldehyde and 4-hydroxy-2-nonenal. Oxidative Medine and Cellular Longevity, Article ID 360438; http://dx.doi.org/10.1155/2014/360438Google Scholar
  5. Beck M, Theopold U, Schmidt O. 2000. Evidence of serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. Journal of Insect Physiology, 46, 1275–1283CrossRefGoogle Scholar
  6. Burke G.R., Strand M.R. 2012. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus. Journal of Virology, 86, 3293–3306. DOI:10.1128/JVI.06434-11CrossRefGoogle Scholar
  7. Cai J., Ye G.Y., Hu C. 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. Journal of Insect Physiology, 50, 315–322. DOI: http://dx.doi.org/10.1016/j.jinsphys.2004.01.007CrossRefGoogle Scholar
  8. Carton Y., Frey F., Nappi A.J. 2009. Parasite-induced changes in nitric oxide levels in Drosophila paramelanica. Journal of Parasitology, 95, 1134–1141. doi: http://dx.doi.org/10.1645/GE-2091.1CrossRefGoogle Scholar
  9. Chan F. K., Moriwaki K., De Rosa M.J. 2013. Detection of necrosis by release of lactate dehydrogenase (LDH) activity. Methods in Molecular Biology, 979, 65–70. DOI: 10.1007/978-1-62703-290-27CrossRefGoogle Scholar
  10. Davies D. H., Vinson S. B. 1986. Passive evasion by eggs of the braconid parasitoid Cardiochiles nigriceps of encapsulation in vitro by haemocytes of host Heliothis virescens. Journal of Insect Physiology, 32, 1003–1010CrossRefGoogle Scholar
  11. Davies D. H., Strand M. R., Vinson S. B. 1987. Changes in differential haemocyte count and in vitro behavior of plasmatocytes from host Heliothis virescens caused by Campoletis sonorensis polydnavirus. Journal of Insect Physiology, 33, 143–153CrossRefGoogle Scholar
  12. Decker T., Lohmann-Matthes M.L. 1988. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115, 61–69CrossRefGoogle Scholar
  13. Edson K. M., Vinson S. B., Stotz D. B., Summers M. D. 1981. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science, 211, 582–583CrossRefGoogle Scholar
  14. Fang Q., Wang F., Gatehouse J.A., Gatehouse A.M.R., Chen X-X., et al. 2011. Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-Type Lectin gene expression. PLoS ONE, 6(10): e26888. DOI:10.1371/journal.pone.0026888CrossRefGoogle Scholar
  15. Fang Q, Wang L, Zhu JY, Li YM, Song QS, et al. 2010. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum, BMC Genomics, 11, 484, DOI: 10.1186/1471-2164-11-484CrossRefGoogle Scholar
  16. Fatima M.N., Vivek A.S., Amreeta D., Uma D.P., 2011. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer, 11, 382. DOI: 10.1186/1471-2407-11-382CrossRefGoogle Scholar
  17. Fernandez-Botran R., Větvička V 2000. Cell cytotoxicity, in: Advanced methods in cellular immunology. CRC Press LLC, Florida., 119–133. eBook ISBN:978-1-4200-3923-8CrossRefGoogle Scholar
  18. Ferrarese R., Morales J., Fimiarz D., Webb B.A., Govind S. 2009. A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands. Journal of Experimental Biology, 212, 2261–2268CrossRefGoogle Scholar
  19. Finney D. J. 1971. Probit Analysis, Cambridge University Press, London, pp. 333Google Scholar
  20. Hodges M., Delong J.M., Forney C.F., Prange R.K. 1999. Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. DOI:10.1007/s004250050524CrossRefGoogle Scholar
  21. Ibrahim A.M., Kim Y. 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. Journal of Insect Physiology, 52, 943–950CrossRefGoogle Scholar
  22. Ioannou Y.A., Chen F.W. 1996. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Research, 24, 992–993 http://dx.doi.org/10.1093/nar/24.5CrossRefGoogle Scholar
  23. Kasibhatla S., Amarante-Mendes G.P, Finucane D., Brunner T., Bossy-Wetzel E., Green D.R. 2006. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, cshprotocols.cshlp.org. DOI:10.1101/pdb.prot4493CrossRefGoogle Scholar
  24. Krishnan N., Hyrsl P., Simek V., 2006. Nitric oxide production by hemocytes of larva and pharate prepupa of Galleria mel-lonella in response to bacterial lipopolysaccharide: Cytopro-tective or cytotoxic? Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 142, 103–110. DOI: http://dx.doi.org/10.1016/j.cbpc.2005.10.016PubMedGoogle Scholar
  25. Kroemer J.A., Webb B.A. 2004. Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annual Review of Entomology, 49, 431–456CrossRefGoogle Scholar
  26. Loreto F., Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127, 1781–1787. DOI: http://dx.doi.org/10.1104/pp. 010497CrossRefGoogle Scholar
  27. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  28. Lynn D.W. 2001. Novel techniques to establish new insect cell lines. In Vitro Cellular & Developmental Biology — Animal, 37, 319–321CrossRefGoogle Scholar
  29. Makwana P., Pradeep A.N., Hungund S.P., Ponnuvel K.M., Trivedy K. 2017. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis. Archives of Insect Biochemistry and Physiology, 94, DOI: 10.1002/arch.21373.CrossRefGoogle Scholar
  30. Martínez-Maqueda D., Hernández-Ledesma B., Amigo L., Miralles B., Gómez-Ruiz J. Á. 2013. Extraction/Fractionation techniques for proteins and peptides and protein digestion, Chapter 2. In: Proteomics in Foods: Principles and Applications, Food Microbiology and Food Safety 2 (Eds: F. Toldrá and L.M.L. Nollet) DOI: 10.1007/978-1-4614-5626-1_2Google Scholar
  31. Michalková V., Valigurová A., Dindo M.L., Vaňhara J. 2009. Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyn-geal skeleton and digestive tract. Journal of Parasitology, 95, 544–554. DOI: http://dx.doi.org/10.1645/GE-1673.1CrossRefGoogle Scholar
  32. Milei J., Forcada P., Fraga C.G., Grana D.R., et al., 2007. Relationship between oxidative stress, lipid peroxidation and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion. Cardiovascular Research, 73, 710–719. DOI: http://dx.doi.org/10.1016/j.cardiores.2006.12.007CrossRefGoogle Scholar
  33. Moldovan L., Moldovan N.I. 2004. Oxygen free radicals and redox biology of organelles. Histochemistry and Cell Biology, 122, 395–412. DOI:10.1007/s00418-004-0676-yCrossRefGoogle Scholar
  34. Moreau S.J., Vinchon S., Cherqui A., Prévost G. 2009. Components of Asobara venoms and their effects on hosts. Advances in Parasitology, 70, 217–232. DOI: 10.1016/S0065-308X(09)70008-9CrossRefGoogle Scholar
  35. Mylonas C., Kouretas D. 1999. Lipid peroxidation and tissue damage. In Vivo, 13, 295–309PubMedGoogle Scholar
  36. Nalini M., Choi J.Y., Je Y.H., Hwang I., Kim Y. 2008. Immunoevasive property of a polydnaviral product, CpBV-lectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). Journal of Insect Physiology, 54, 1125–1131CrossRefGoogle Scholar
  37. Nappi A.J., Vass E., Frey F., Carton Y. 2000. Nitric Oxide involvement in Drosophila immunity. Nitric oxide- Biology and Chemistry, 4, 423–430. DOI:10.1006/niox.2000.0294CrossRefGoogle Scholar
  38. Narayanaswamy K.C., Devaiah M.C. 1998. Silkworm uzi fly. Zen Publishers, Bangalore, India.Google Scholar
  39. Nath B. S., Gupta S. K., Bajpai A. K. 2012. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis. Acta Parasitology, 57, 342–353. DOI: 10.2478/s11686-012-0051-4Google Scholar
  40. Nath B. S., Hassan, W., Rao S. N., Vijayaprakash N.B., Gupta SK., Mohan N.M., Bajpayi A.K. 2011. Genetic diversity among microsporidian isolates from the silkworm, Bombyx mori, as revealed by randomly amplified polymorphic DNA (RAPD) markers. Acta Parasitologica, 56, 333–338. DOI: 10.2478/S11686-011-0079-XGoogle Scholar
  41. Pennacchio F., Strand M. R., 2006. Evolution of developmental strategies in parasitic hymenoptera. Annual Review of Entomology, 51, 233–58CrossRefGoogle Scholar
  42. Pradeep A.R., Anitha J., Awasthi A.K., Babu M.A., Geetha M.N., et al. 2012. Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell & Tissue Research, 352, 371–385, DOI: 10.1007/s00441-012-1520-7CrossRefGoogle Scholar
  43. Pradeep A.R., Anitha J., Panda A., Pooja M., Awasthi A.K., et al. (2015) Phylogeny of host response proteins activated in silkworm Bombyx mori in response to infestation by dipteran en-doparasitoid revealed functional divergence and temporal molecular adaptive evolution. Journal of Clinical & Cellular Immunology, 6, 370. DOI:10.4172/2155-9899.1000370Google Scholar
  44. Rašić S., Rebić D., Hasić S., Rašić I., Delić Šarac M. 2015. Influence of malondialdehyde and matrix metalloproteinase-9 on progression of carotid atherosclerosis in chronic renal disease with cardiometabolic syndrome. Mediators of Inflammation. 2015:614357. DOI: 10.1155/2015/614357.Google Scholar
  45. Rowell B., Bunsong N., Satthaporn K., Phithamma S., Doungsa-Ard C. (2005) Hymenopteran parasitoids of diamondback moth (Lepidoptera: Ypeunomutidae) in northern Thailand. Journal of Economic Entomology, 98, 449–56CrossRefGoogle Scholar
  46. Schmidt O., Theopold U., Strand M.R. (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays, 23, 344–351CrossRefGoogle Scholar
  47. Strand M R, Noda T. 1991. Alterations in the haemocytes of Pseudo-plusia includens after parasitism by Microplitis demolitor. Journal of Insect Physiology 37, 839–850CrossRefGoogle Scholar
  48. Valigurová A., Michalková V., Koník P., Dindo M.L., Gelnar M., Vanhara J. 2014. Penetration and encapsulation of the larval endoparasitoid Exorista larvarum (Diptera: Tachinidae) in the factitious host Galleria mellonella (Lepidoptera: Pyralidae). Bulletin of Entomological Research, 104, 203–212. DOI: 10.1017/S0007485313000655CrossRefGoogle Scholar
  49. Velikova V, Yordanov I., Edreva A. 2000. Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59–66. DOI: doi.org/10.1016/S0168-9452(99)00197-1CrossRefGoogle Scholar
  50. Wong-ekkabut J., Xu Z., Wannapong T., Tang I-M., Tieleman D.P., Monticelli L. 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophysical Journal, 93, 4225–4236. DOI: 10.1529/biophysj.107.112565CrossRefGoogle Scholar
  51. Wu M.L., Ye G.Y., Zhu J.Y., Chen X.X., Hu C. 2008. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. Journal of Invertebrate Pathology, 99, 186–191CrossRefGoogle Scholar
  52. Yagi K. 1998. Simple assay for the level of total lipid peroxides in serum or plasma. Methods in Molecular Biology, 108, 101–106. DOI: 10.1385/0-89603-472-0:101PubMedGoogle Scholar
  53. Ye G.Y., Zhu J.Y., Zhang Z., Fang Q., Cai J., Hu C. 2007. Venom from the endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae) adversely affects host hemocytes: differential toxicity and micro structural and ultrastructural changes in plasmatocytes and granular cells. In: Recent advances in the Biochemistry, Toxicity and mode of action of parasitic wasp venoms. (Eds: D. Rivers, J. Yolder). Kerala, India, Research Signpost, pp. 115–127Google Scholar
  54. Yin H., Xu L., Porter N.A. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews, 111, 5944–5972. DOI: 10.1021/cr200084zCrossRefGoogle Scholar
  55. Young S. Y., Yearian W.C. 1990. Transmission of nuclear polyhedrosis virus by the parasitoid Microplitis croceipes (Hymenoptera: Braconidae) to Heliothis virescens (Lepidoptera: Noctuidae) on soybean. Environmental Entomology, 19, 251–256CrossRefGoogle Scholar
  56. Zhang G., Lu Z-Q., Jiang H., Asgari S. 2004. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology, 34, 477–483CrossRefGoogle Scholar
  57. Zhang Y.M., Lu X.F., Bhavnani B.R. 2003. Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosciences, 4:32, DOI: 10.1186/1471-2202-4-32CrossRefGoogle Scholar
  58. Zhu J-Y., Ye G-Y., Hu C. 2011. Venom of the endoparasitoid wasp Pteromalus puparum: An overview. Psyche. DOI: http://dx.doi.org/10.1155/2011/520926Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Makwana Pooja
    • 1
  • Appukuttan Nair R. Pradeep
    • 1
    Email author
  • Shambhavi P. Hungund
    • 1
  • Chandrashekhar Sagar
    • 2
  • Kangayam M. Ponnuvel
    • 1
  • Arvind K. Awasthi
    • 1
  • Kanika Trivedy
    • 3
  1. 1.Proteomics Division, Seribiotech Research LaboratoryBangaloreIndia
  2. 2.Department of NeuropathologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
  3. 3.Central Sericultural Research & Training InstituteBerhamporeIndia

Personalised recommendations