Advertisement

Acta Parasitologica

, Volume 62, Issue 4, pp 708–716 | Cite as

Anti-angiogenic and anti-lymphangiogenic role of praziquantel and artemether in experimental mansoniasis

  • Naglaa Fathy Abd El-AalEmail author
  • Rania Said Hamza
  • Mona Magdy
Article

Abstract

Angiogenesis is one of the pillars of neoplasia. Lymphangiogenesis in context of granulomas is not yet understood. This study aimed to evaluate the role of praziquantel (PZQ) and artemether (ART) as anti-angiogenic and anti-lymphangiogenic drugs in Schistosoma mansoni induced experimental hepatic model through immunohistochemical and serological studies, this can be used as a potential novel prophylactic approach in hepatic malignancy prevention and possible management. Forty female CD-1 Swiss albino mice were used divided into 4 groups (10 mice each); control healthy, control infected untreated, PZQ-treated and ART-treated. Angiogenic and lymphangiogenic effect of the drugs assessed pathologically through counting of the newly formed capillaries and lymphatics that immunohistochemically expressed by vascular Endothelial Growth Factor (VEGF),CD34 and D2-40 in liver sections using Cell Image Analyzer and serologically by evaluation of serum level of Tumor Necrosis Factor-Alpha (TNF-α). Our results showed significant decrease in serum TNF-α in ART-treated group compared to control infected and PZQ treated groups. ART exhibited significant anti-angiogenic role on granulomas illustrated by remarkable milder intensity and significantly lower expression values of VEGF and CD34 immunostaining compared to PZQ and non-treated groups. Also, ART treated group exhibited negative D2-40 expression in the granulomas in contrast to the other groups, supporting the potent ART’ anti-lymphangiogenic role that exceeded PZQ. In conclusion, ART showed not only anti-angiogeniceffect but also prominent anti-lymphangiogenic effect on hepatic S. mansoni granulomas compared to PZQ. Our study supports the potential use of ART as a potential novel prophylactic approach in hepatic malignancy prevention and possible management.

Keywords

Schistosoma mansoni anti-angiogenic anti-lymphangiogenic VEGF CD34 D2-40 TNF-α 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Fattah N.S., Ahmed N.S. 2012. Evidence of intra-hepatic vascular proliferation remodeling early after cure in experimental schistosomiasis mansoni: an immunohistochemical descriptive study. Experimental Parasitology, 130, 58–62. DOI: 10.1016/j.exppara.2011.09.014CrossRefGoogle Scholar
  2. Aggarwal B.B. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews Immunology, 3, 745–756. DOI: 10.1038/nri1184CrossRefGoogle Scholar
  3. Andrade Z.A. 2004. Schistosomal hepatopathy. Memórias do Institute Oswaldo Cruz 99 (Suppl1), 51–57CrossRefGoogle Scholar
  4. Andrade Z.A. 2009. Schistosomiasis and liver fibrosis. Parasite Immunology 31, 656–663. DOI: 10.1111/j.1365-3024.2009.01157.xCrossRefGoogle Scholar
  5. Andrade Z.A., Santana T.S. 2010. Angiogenesis and schistosomiasis. Memórias do Instituto Oswaldo Cruz Rio de Janeiro, 105, 436–439CrossRefGoogle Scholar
  6. Andrade Z.A., Baptista A.P., Santana T.S. 2006. Remodeling of hepatic vascular changes after specific chemotherapy of schistosomal periportal fibrosis. Memórias do Instituto Oswaldo Cruz, 101(Suppl 1), 267–272CrossRefGoogle Scholar
  7. Bancroft S., Stevens A.(Eds) 1982. Theory and practice of histological techniques. 2nd ed. Churchill-Livingston, New YorkGoogle Scholar
  8. Carmeliet P., Jain R.K. 2000. Angiogenesis in cancer and other diseases. Nature, 407, 249–257. DOI: 10.1038/35025220CrossRefGoogle Scholar
  9. Chen H.H., Zhou H.J., Wu G.D., Lou X. E. 2004. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology, 71, 1–9. DOI: 10.1159/000076256CrossRefGoogle Scholar
  10. Chung C, Iwakiri Y. 2013. The lymphatic vascular system in liver diseases: its role in ascites formation. Clinical and molecular hepatology, 19, 99–104. DOI: 10.3350/cmh.2013.19.2.99CrossRefGoogle Scholar
  11. DeLeve L.D. 2013. Liver sinusoidal endothelial cells and liver regeneration. Journal of Clinical Investigation, 123, 1861–1866. DOI:10.1172/JCI66025CrossRefGoogle Scholar
  12. Dudek Az., Gupta K., Ramakrishnan S., Mukhopadhyay D. 2010. Tumor angiogenesis. Oncology, 1–2. http://dx.doi.org/10.1155/2010/761671Google Scholar
  13. Fedchenko N, Reifenrath J. 2014. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue — a review. Diagnostic Pathology, 9, 221. DOI: 10.1186/s13000-014-0221-9CrossRefGoogle Scholar
  14. Firestone G.L., Sundar S.N. 2009. Anticancer activities of artemisinin and its bioactive derivatives. Expert Reviews in Molecular Medicine Journal, 11, e32.CrossRefGoogle Scholar
  15. Franchitto A., Paolo O., Anastasia R., Guido C., Romina M., Domenico A., Eugenio G. 2013. Expression of vascular endothelial growth factors and their receptors by hepatic progenitor cells in human liver diseases. HepatoBiliary Surgery and Nutrition 2, http://hbsn.amegroups.com/article/view/1170/1847
  16. Gligorijevic J., Djordjevic B., Petrovic A., Radirevic A., Stojanovic S. 2010. Expression of CD34 in cirrhotic liver—reliance to dedifferentiation. World Journal of Vojnosanit Pregl, 67, 459–462CrossRefGoogle Scholar
  17. Hammam O., Mahmoud O., Zahran M., Sayed A., Salama R., Hosny K., Farghly A.A. 2013. Liver Disease and Hepatocellular Carcinoma. Gastrointestinal Cancer Research, 6, 107–114PubMedGoogle Scholar
  18. Harding J., Ritter A., Rayasam A., Fabry Z., Sandor M. 2015. Lymphangiogenesis is induced by Mycobacterial granulomas via vascular endothelial growth factor receptor-3 and supports systemic T-cell responses against Mycobacterial antigen. American Journal of Pathology, 185, 432–445 DOI: 10.1016/j.ajpath.2014.09.020CrossRefGoogle Scholar
  19. Ho W.E., Peha H.Y., Chan T.K., Wong W.S.F. 2014. Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacology and Therapeutics, 142, 126–139. DOI: 10.1016/j.pharmthera.2013.12.001CrossRefGoogle Scholar
  20. Jiraungkoorskula W., Sahaphonga S., Sobhonc P., Riengrojpitaka S., Kangwanrangsan N. 2005. Effects of praziquantel and artesunate on the tegument of adult Schistosoma mekongi harboured in mice. Parasitology International, 54, 177–183. DOI: 10.1016/j.parint.2005.04.001CrossRefGoogle Scholar
  21. Kato T., Ito Y., Hosono K., Suzuki T., Tamaki H., Minamino T., et al. 2011. Vascular Endothelial Growth Factor Receptor-1 Signaling Promotes Liver Repair through Restoration of Liver Microvasculature after Acetaminophen Hepatotoxicity. Toxicological Sciences 120, 218–229. DOI: 10.1093/toxsci/kfq366CrossRefGoogle Scholar
  22. Keiser J., Utzinger J. 2012. Antimalarials in the treatment of schistosomiasis. Current Pharmaceutical Design 18, 3531–3538PubMedGoogle Scholar
  23. Lai W.K., Adams D.H. 2005. Angiogenesis and chronic inflammation; the potential for novel therapeutic approaches in chronic liver disease. Journal of Hepatology, 42, 7–11. DOI: http://dx.doi.org/10.1016/j.jhep.2004.11.008CrossRefGoogle Scholar
  24. Li Q., Weina P., Hickman M. 2013. The Use of Artemisinin Compounds as Angiogenesis Inhibitors to Treat Cancer. Cardiology and Cardiovascular Medicine “Research Directions in Tumor Angiogenesis”, (Ed.) Jianyuan Chai, Chapter7 ISBN 978-953-51-0963-1 DOI: 10.5772/54109 http://dx.DOI.org/10.5772/54109Google Scholar
  25. Liang Y.S., Bruce J.I., Boyd D.A. 1987. Laboratory cultivation of schistosome vector snails and maintenance of schistosome life cycles. Proc First Sino-Am Symp, 1, 34–48Google Scholar
  26. Loeffler D.A., Lundy S.K., Singh K.P., Gerard H.C., Hudson A.P., Boros D.L. 2002. Soluble egg antigens from Schistosoma mansoni induce angiogenesis-related processes by up-regulating vascular endothelial growth factor in human endothelial cells. Journal of Infectious Diseases, 185, 1650–1656. DOI:10.1086/340416CrossRefGoogle Scholar
  27. Mantovani A., Schioppa T., Porta C., Allavena P., Sica A. 2006. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Reviews, 25, 315–322. DOI: 10.1007/s10555-006-9001-7CrossRefGoogle Scholar
  28. Neuman M.G, Benhamou J.P, Marcellin P, et al. 2007. Cytokine-chemokine and apoptotic signatures in patients with hepatitis C. Translational Research, 149, 126–136. DOI: 10.1016/j.trs1.2006.11.002CrossRefGoogle Scholar
  29. Nurden A. 2011. Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105 (Suppl 1), S13–33. DOI: 10.1160/THS10-11-0720PubMedGoogle Scholar
  30. Ono M. 2008. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli macrophages and cancer cells as targets for therapeutic strategy. Cancer Science, 99, 1501–1506. DOI: 10.1111/j.1349-7006.2008.00853.xCrossRefGoogle Scholar
  31. Pusztaszeri M.P., Seelentag W., Fred T., Bosman F.T. 2006. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. Journal of Histochemistry & Cytochemistry, 54, 385–395CrossRefGoogle Scholar
  32. Ren S., Abuel-Haija M., Khurana J.S., Zhang X. 2011. D2-40: an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. International Journal of Clinical and Experimental Pathology. 4, 175–182PubMedPubMedCentralGoogle Scholar
  33. Tawfeek G.M., Alafifi A.M., Azmy M.F. 2003. Immunological indicators of morbidity in human schistosomiasis mansoni: role of vascular endothelial growth factor and anti-soluble egg antigen IgG4 in disease progression. Journal of Egyptian Society of Parasitology, 33, 597–614Google Scholar
  34. Tsuji N., Ishiguro S., Sasaki Y. and Kudo M. 2013. CD34 expression in noncancerous liver tissue predicts multicentric recurrence of hepatocellular carcinoma. Journal of Digestive Diseases, 31, 467–71. DOI: 10.1159/000355246CrossRefGoogle Scholar
  35. Van Kruiningen H.J., Hayes A.W., Colombel J.F. 2014. Granulomas obstruct lymphatics in all layers of the intestine in Crohn’s disease. APMIS, 122, 1125–9. DOI: 10.1111/apm.12268PubMedGoogle Scholar
  36. Verheul H.M., Pinedo H.M. 2000. The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clinical Breast Cancer, 1(Suppl 1), S80–4CrossRefGoogle Scholar
  37. Wang J., Zhang B., Guo Y., Li G., Xie Q., Zhu B., et al. 2008. Artemisinin inhibits tumor lymphangiogenesis by suppression of vascular endothelial growth factor C. Pharmacology, 82, 148–155. DOI: 10.1159/000148261CrossRefGoogle Scholar
  38. World Health Organization 2016. Schistosomiasis. http://www.who.int/mediacentre/factsheets/fs115/ena.Google Scholar
  39. Yan Z., Qu K., Zhang J., Huang Q., Qu P., Xu X., et al. 2015. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells. Clinical Science, 129, 699–710; DOI: 10.1042/CS20140823CrossRefGoogle Scholar
  40. Yokomor H., Oda M., Kaneko F., Kawachi S., Tanabe M., Yosbimura K., et al. T. 2010. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver- Re-evaluations of microlymphatic abnormalities. BMC Gastroenterology, 10, 131. DOI: 10.1186/1471-230X-10-131CrossRefGoogle Scholar
  41. Zhang Z., Yu S., Miao L., Huang X., Zhang X., Zhu Y. 2008. Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Chinese Journal of Integrative Medicine, 6, 134–138. DOI: 10.3736/jcim20080206CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Naglaa Fathy Abd El-Aal
    • 1
    Email author
  • Rania Said Hamza
    • 1
  • Mona Magdy
    • 2
  1. 1.Department of Medical Parasitology, Faculty of MedicineZagazig UniversityEgypt
  2. 2.Department of PathologyTheodor Bilharz Research Institute (TBRI)GizaEgypt

Personalised recommendations