Advertisement

Acta Parasitologica

, Volume 62, Issue 1, pp 164–170 | Cite as

Reduced [14C]-methionine uptake and fecundity in Schistosoma mansoni females treated with recombinant tumor necrosis factor α in vitro

  • M. A. HaseebEmail author
  • Raag Agrawal
  • Bernard Fried
Article

Abstract

Recombinant human TNFα (rhTNFα) has previously been shown to reduce fecundity in Schistosoma mansoni adult females maintained in vitro without males, and adversely affect the uptake of [14C]-tyrosine, an amino acid required for schistosome vitellogenesis. Here we report on the effect of rhTNFα on [14C]-methionine uptake in both separated and paired females, and the effect of three different preparations of rTNFα on schistosome oviposition in vitro. In the absence of rhTNFα, separated females incorporated only 30% of the [14C]-methionine incorporated by paired females in a dose- and time-dependent manner, suggesting low metabolic activity of females in the absence of males. Separated females and worm-pairs were treated with increasing doses of rhTNFα for 2 or 4 hr and then incubated in RPMI 1640 containing 10% fetal calf serum (FCS) and 5 μCi ml−1 [14C]-methionine for 1 hr. Separated females treated with rhTNFα for 4 hr incorporated less methionine than those treated for 2 hr. In contrast, paired females treated with rhTNFα incorporated significantly smaller amounts of [14C]-methionine in a TNFα dose-dependent but time-independent manner [2 hr (P = 0.001) or 4 hr (P = 0.027) One-Way ANOVA]. Worm-pairs maintained in RPMI 1640 containing 10% FCS and 100 ng ml−1 of any of the three rTNFα preparations laid significantly fewer eggs than the worms cultured without rTNFα (P = 0.001; Kruskal-Wallis Test). We also observed that among rTNFα-treated worm-pairs, females were sluggish and tended to separate from their male partners. These observations suggest that TNFα inhibits [14C]-methionine uptake and reduces fecundity in females paired with males. Since paired females incorporate substantially greater amounts of [14C]-methionine, the role of males in stimulating metabolic activity in females is affirmed. Reduced amino acid uptake, and possibly other nutrients, may contribute to the diminished fecundity observed in TNFα-treated females.

Keywords

Schistosoma Schistosoma mansoni fecundity tumor necrosis factor α methionine in vitro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Azim A., Sedky H.A., El-Tahawy M.A., Fikry A.A., Mostafa H. 1995. Serum levels of tumor necrosis factor in different stages of schistosomal infection. Journal of the Egyptian Society of Parasitology, 25, 279–287PubMedGoogle Scholar
  2. Amiri P., Locksley R.M., Parslow T.G., Sadick M., Rector E., Ritter D., McKerrow J.H. 1992. Tumour necrosis factor a restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature, 1992; 356, 604–607. DOI: 10.1038/356604a0CrossRefGoogle Scholar
  3. Andrade Z.A. 2009. Schistosomiasis and liver fibrosis. Parasite Immunology, 31, 656–663. DOI: 10.1111/j.1365–3024.2009.01157.CrossRefGoogle Scholar
  4. Barth L.R., Fernandez A.P.M., Rodrigues V. 1996. Oviposition by Schistosoma mansoni during in vitro cultivation. Revista do Instituto de Medicina Tropical de São Paulo, 38, 423–426. DOI: 10.1590/S0036–46651996000600006CrossRefGoogle Scholar
  5. Basch P.F. (Ed.) 1991. Schistosomes: Development, reproduction, and host relations. Oxford University Press, New York, New York. pp. 249Google Scholar
  6. Berriman M., Haas B.J., LoVerde P.T., Wilson R.A., Dillon G.P., Cerqueira G.C., Mashiyama S.T., Al-Lazikani B., Andrade L.F., Ashton P.D. et al. 2009. The genome of the blood fluke Schistosoma mansoni. Nature, 460, 352–358. DOI: 10.1038/nature08160CrossRefGoogle Scholar
  7. Chappell L.H. 1974. Methionine uptake by larval and adult Schistosoma mansoni. International Journal for Parasitology, 4, 361–369. DOI: 10.1016/0020–7519(74)90043–5CrossRefGoogle Scholar
  8. Charters Y., Grimble R.F. 1989. Effect of recombinant human tumor necrosis factor a on protein synthesis in liver, skeletal muscle and skin of rats. Biochemical Journal, 258, 493–497CrossRefGoogle Scholar
  9. Cheever A.W., Duvall R.H. 1982. Schistosoma japonicum: migration of adult worm pairs within the mesenteric veins of mice. Transactions of the Royal Society of Tropical Medicine and Hygiene, 76, 641–645. DOI: 10.1016/0035–9203(82)90231–0CrossRefGoogle Scholar
  10. Cheever A.W., Powers K.G. 1972. Schistosoma mansoni infection in rhesus monkeys: comparison of the course of heavy and light infections. Bulletin of the World Health Organization, 46, 301–309PubMedPubMedCentralGoogle Scholar
  11. Cheever A.W., Poindexter R.W., Wynn T.A. 1999. Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. Infection and Immunity, 67, 2201–2208.PubMedPubMedCentralGoogle Scholar
  12. Chensue S.W., Warmington K.S., Hershey S.D., Terebuh P.D., Othman M., Kunkel S.L. 1993. Evolving T cell responses in murine schistosomiasis. Th2 cells mediate secondary granulomatous hypersensitivity and are regulated by CD8+ cells in vivo. Journal of Immunology, 151, 1391–1400Google Scholar
  13. Clough E.R. 1981. Morphology of reproductive organs and oogenesis in bisexual and unisexual transplants of mature Schistosoma mansoni females. Journal of Parasitology, 67, 535–539. DOI: 10.2307/3280487CrossRefGoogle Scholar
  14. Damian R.T. 1987. The exploitation of host immune responses by parasites. Journal of Parasitology, 73, 3–13CrossRefGoogle Scholar
  15. Davies S.J., Lim K.C., Blank R.B., Kim J-H., Lucas K.D., Hernandez D.C., Sedgwick J.D., McKerrow J.H. 2004. Involvement of TNF in limiting liver pathology and promoting parasite survival during schistosome infection. International Journal for Parasitology, 34, 27–36. DOI: 10.1016/j.ijpara.2003.10.010CrossRefGoogle Scholar
  16. Duvall R.H., DeWitt W.B. 1967. An improved perfusion technique for recovering adult schistosomes from laboratory animals. American Journal of Tropical Medicine and Hygiene, 16, 483–486CrossRefGoogle Scholar
  17. Eveland L.K., Haseeb M.A. 2011. Laboratory rearing of Biomphalaria glabrata snails and maintenance of larval schistosomes in vivo and in vitro. In: (Eds R. Toledo and B. Fried) Biomphalaria snails and larval trematodes. Springer, New York. p. 33–55. DOI: 10.1007/978–1–4419–7028–2_2CrossRefGoogle Scholar
  18. Goldmann T., Zissel G., Gupta R.S., Schlaak M., Vollmer E., Müller-Quernheim J. 2001. Formation of granulomas in the lungs of severe combined immunodeficient mice after infection with Bacillus Calmette-Guerin. American Journal of Pathology, 158, 1890–1891. DOI: 10.1016/S0002–9440(10)64147–8CrossRefGoogle Scholar
  19. Gryseels B., Polman K., Clerinx J., Kestens L. 2006. Human schistosomiasis. Lancet, 368, 1106–1118. DOI: 10.1016/S0140–6736(06)69440–3CrossRefGoogle Scholar
  20. Haseeb M.A., Fried B. 1997. Modes of transmission of trematode infections and their control. In: (Eds B. Fried and T.K. Graczyk) Advances in Trematode Biology. CRC Press, Boca Raton, Florida. pp. 31–56Google Scholar
  21. Haseeb M.A., Shirazian D.J., Preis J. 2001. Elevated serum levels of TNF-a, sTNF-RI and sTNF-RII in murine schistosomiasis correlate with schistosome oviposition and circumoval granuloma formation. Cytokine, 15, 266–269. DOI: 10.1006/cyto. 2001.0925CrossRefGoogle Scholar
  22. Haseeb M.A., Solomon W.B., Palma J.F. 1996. Schistosoma mansoni: Effect of recombinant tumor necrosis factor a on fecundity and [14C]tyrosine uptake in females maintained in vitro. Comparative Biochemistry and Physiology, 115C, 265–269. DOI: 10.1016/S0742–8413(96)00137–5Google Scholar
  23. James S.L., Glaven J., Goldenberg S., Meltzer M.S., Pearce E. 1990 Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity. Parasite Immunology, 12, 1–13. DOI: 10.1111/j.1365–3024.1990.tb00932.xCrossRefGoogle Scholar
  24. Joseph A.L., Boros D.L. 1993. Tumor necrosis factor plays a role in Schistosoma mansoni egg-induced granulomatous inflammation. Journal of Immunology, 151, 5461–5471Google Scholar
  25. Kawanaka M. 1991. Identification of a putative eggshell precursor protein of the female Schistosoma japonicum. International Journal for Parasitology, 21, 225–231. DOI: 10.1016/0020–7519(91)90013-WCrossRefGoogle Scholar
  26. Kawanaka M., Sugiyama H. 1992. Incorporation of radiolabelled amino acids by adult Schistosoma japonicum: further characterization of a putative eggshell precursor protein. International Journal for Parasitology, 22, 589–595CrossRefGoogle Scholar
  27. Kupferschmidt K. 2013. A worm vaccine, coming at a snail’s pace. Science, 339, 502–503. DOI: 10.1126/science.339.6119.502CrossRefGoogle Scholar
  28. Lang C.H., Frost R.A. 2007. Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor α. Metabolism–Clinical and Experimental, 56, 49–57. DOI: 10.1016/j.metabol.2006.08.025CrossRefGoogle Scholar
  29. Lang C.H., Frost R.A., Nairn A.C., MacLean D.A., Vary T.C. 2002. TNF-a impairs heart and skeletal muscle protein synthesis by altering translation initiation. American Journal of Physiology–Endocrinology and Metabolism, 282, E336–E347. DOI: 10.1152/ajpendo.00366.2001CrossRefGoogle Scholar
  30. Murray C.J., Vo s T., Lozano R., Naghavi M., Flaxman A.D., Michaud C., Ezzati M., Shibuya K., Salomon J.A., Abdalla S. et al. 2012. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2197–2223. DOI: 0.1016/S0140–6736(12)61689–4CrossRefGoogle Scholar
  31. Oliveira K.C., Carvalho M.L.P., Venancio T.M., Miyasato P.A., Kawano T., DeMarco R., Verjovski-Almeida S. 2009. Identification of the Schistosoma mansoni TNF-alpha receptor gene and the effect of human TNF-alpha on the parasite gene expression profile. PloS Neglected Tropical Diseases, 3(12), e556. DOI: 10.1371/journal.pntd.0000556CrossRefGoogle Scholar
  32. Popiel I., Cioli D., Erasmus D.A. 1984. The morphology and reproductive status of female Schistosoma mansoni following separation from male worms. International Journal for Parasitology, 14, 183–190. DOI: 10.1016/0020–7519(84)90047-XCrossRefGoogle Scholar
  33. Popiel I., Erasmus D.A. 1981. Schistosoma mansoni: changes in the rate of tyrosine uptake by unisexual females after stimulation by males and male extracts. Journal of Helminthology, 55, 33–37PubMedGoogle Scholar
  34. Raziuddin S., Masihuzzaman M., Shetty S., Ibrahim A. 1993. Tumor necrosis factor alpha production in schistosomiasis with carcinoma of urinary bladder. Journal of Clinical Immunology, 13, 23–29. DOI: 10.1007/BF00920632CrossRefGoogle Scholar
  35. Robinson D.L.H. 1960. Egglaying by Schistosoma mansoni in vitro. American Journal of Tropical Medicine and Hygiene, 54, 112–117Google Scholar
  36. Ross A.G.P., Bartley P.B., Sleigh A.C., Olds G.R., Li Y., Williams G.M., MacManus D.P. 2002. Schistosomiasis. New England Journal of Medicine, 346, 1212–1220. DOI: 10.1056/NE-JMra012396CrossRefGoogle Scholar
  37. Sasajima T., Mineura K., Kowada M., Hatazawa J., Miura S. 1997. Intracarotid recombinant human tumor necrosis factor-a reduces cerebral blood flow and methionine uptake in rat brain tumors. Journal of Neuro-Oncology, 34, 123–129CrossRefGoogle Scholar
  38. Shirazian D., Schiller E.L. 1983. A technique for selecting uniform samples of Schistosoma mansoni based on egg production. Journal of Parasitology, 69, 989–990. DOI: 10.2307/3281070CrossRefGoogle Scholar
  39. Smith D., Hansch H., Bancroft G., Ehlers S. 1997. T-cell-independent granuloma formation in response to Mycobac-terium avium: role of tumour necrosis factor-alpha and interferon-gamma. Immunology, 92, 413–421. DOI: 10.1046/j.1365–2567.1997.00384.xCrossRefGoogle Scholar
  40. Warren K.S. 1972. The immunopathogenesis of schistosomiasis: a multidisciplinary approach. Transactions of the Royal Society of Tropical Medicine and Hygiene, 66, 417–434. DOI: 10.1016/0035–9203(72)90273–8CrossRefGoogle Scholar
  41. Wynn T.A., Cheever A.W. 1995. Cytokine regulation of granuloma formation in schistosomiasis. Current Opinion in Immunology, 7, 505–511. DOI: 10.1016/0952–7915(95)80095–6CrossRefGoogle Scholar
  42. WHO 2010. Working to overcome the global impact of neglected tropical diseases: First WHO report on neglected tropical diseases. World Health Organization, Geneva. pp. 172Google Scholar
  43. WHO 2015. Schistosomiasis: number of people treated worldwide in 2013. Weekly Epidemiological Record, 90, 25–32Google Scholar
  44. Zwingenberger K., Irschick E., Vergetti Siqueira J.G., Correia Dacal A.R., Feldmeier H. 1990. Tumor necrosis factor in he-patosplenic schistosomiasis. Scandinavian Journal of Immunology, 31, 205–211CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  1. 1.Departments of Cell Biology, Pathology and MedicineState University of New York, Downstate Medical CenterBrooklynUSA
  2. 2.Department of BiologyLafayette CollegeEastonUSA

Personalised recommendations