Advertisement

Acta Parasitologica

, Volume 61, Issue 3, pp 645–649 | Cite as

Increased level of soluble adenosine deaminase in bone marrow of visceral leishmaniasis patients: an inverse relation with parasite load

  • Ambak K. RaiEmail author
  • Prabin Kumar
  • Sheetal Saini
  • Chandreshwar P. Thakur
  • Tulika Seth
  • Dipendra K. DipendraEmail author
Research Note

Abstract

Adenosine deaminase (ADA) which degrades adenosine to inosine, is known to be pro-inflammatory molecule in many diseases. Adenosine suppresses the functioning of the immune system and thus promotes dissemination of the parasite. In our previous finding, the level of soluble ADA in serum of visceral leishmaniasis (VL) was found to be increased as compared to healthy controls. However, it cannot be fairly interpreted unless their level is demonstrated at the disease site, where the parasite resides. We designed this study to correlate the level of soluble ADA (sADA) with parasitic load at the disease site i.e. bone marrow (BM). We found increased levels of sADA in BM as compared to the unaffected BM. Furthermore, a significant inverse correlation is observed between the parasite load and level of sADA at the disease site.

Keywords

Visceral leishmaniasis bone marrow Adenosine deaminase Leishmania donovani 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi A., Mathur R.K., Saha B. 2004. Immune response to Leishmania infection. Indian Journal of Medical Research, 119, 238–58PubMedGoogle Scholar
  2. Baba K., Hoosen A.A., Langeland N., Dyrhol-Riise A.M. 2008. Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts. PLoS One, 3, e2788. DOI: 10.1371/journal.pone.0002788CrossRefGoogle Scholar
  3. Baral N., Mehta K.D., Chandra L., Lamsal M., Rijal S., Koirala S. 2005. Adenosine deaminase activity in sera of patients with visceral leishmaniasis in Nepal. Tropical Doctor, 35, 86–8CrossRefGoogle Scholar
  4. Burgess L.J., Maritz F.J., Le Roux I., Taljaard J.J. 1996. Combined use of pleural adenosine deaminase with lymphocyte/neutrophil ratio. Increased specificity for the diagnosis of tuberculous pleuritis. Chest, 109, 414–9. DOI: 10.1378/chest.109.2.414CrossRefGoogle Scholar
  5. Ciruela F., Saura C., Canela E.I., Mallol J., Lluis C., Franco R. 1996. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Letters, 380, 219–23. DOI: 10.1016/0014-5793(96)00023-3CrossRefGoogle Scholar
  6. de Almeida Marques-da-Silva E., de Oliveira J.C., Figueiredo A.B., de Souza Lima Junior D., Carneiro C.M., Rangel Fietto J.L., Crocco Afonso L.C. 2008. Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection. Microbes and Infection, 10, 850–7. DOI: 10.1016/j.micinf.2008.04.016CrossRefGoogle Scholar
  7. Eltzschig H.K., Weissmuller T., Mager A., Eckle T. 2006. Nucleotide metabolism and cell-cell interactions. Methods in Molecular Biology, 341, 73–87. DOI: 10.1385/1-59745-113-4:73PubMedGoogle Scholar
  8. Gakis C., Calia G., Naitana A., Pirino D., Serru G. 1989. Serum adenosine deaminase activity in HIV positive subjects. A hypothesis on the significance of ADA2. Panminerva medica, 31, 107–13PubMedGoogle Scholar
  9. Giusti G., Gakis C. 1971. Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme, 12, 417–25CrossRefGoogle Scholar
  10. Hall J.G. 1963. Adenosine deaminase activity in lymphoid cells during antibody production. Australian Journal of Experimental Biology and Medical Science, 41, 93–97. DOI: 10.1038/icb.1963.8CrossRefGoogle Scholar
  11. Harris S.G., Padilla J., Koumas L., Ray D., Phipps R.P. 2002. Prostaglandins as modulators of immunity. Trends in Immunology, 23, 144–50. DOI: 10.1016/S1471-4906(01)02154-8CrossRefGoogle Scholar
  12. Hirschhorn R., Ratech H. 1980. Isozymes of adenosine deaminase. Isozymes Current Topics in Biological Medical Research, 4, 131–57Google Scholar
  13. Olah M.E., Stiles G.L. 1995. Adenosine receptor subtypes: characterization and therapeutic regulation. Annual Review of Pharmacology and Toxicology, 35, 581–606. DOI: 10.1146/annurev.pa.35.040195.003053CrossRefGoogle Scholar
  14. Pinheiro C.M., Martins-Duarte E.S., Ferraro R.B., Fonseca de Souza A.L., Gomes M.T., Lopes A.H., Vannier-Santos M.A., Santos A.L., Meyer-Fernandes J.R. 2006. Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Experimental Parasitology, 114, 16–25. DOI: 10.1016/j.exppara.2006.02.007CrossRefGoogle Scholar
  15. Rai A.K., Thakur C.P., Singh A., Seth T., Srivastava S.K., Singh P., Mitra D.K.. 2012. Regulatory T cells suppress T cell activation at the pathologic site of human visceral leishmaniasis. PLoS One, 7, e31551. DOI: 10.1371/journal.pone.0031551CrossRefGoogle Scholar
  16. Rai A.K., Thakur C.P., Velpandian T., Sharma S.K., Ghosh B., Mitra D.K. 2011. High concentration of adenosine in human visceral leishmaniasis despite increased ADA and decreased CD73. Parasite Immunology, 33, 632–6. DOI: 10.1111/j.1365-3024.2011.01315.xCrossRefGoogle Scholar
  17. Roberts M.T. 2005. Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. British Medical Bulletin, 115, 75–76. DOI: 10.1093/bmb/ldl003Google Scholar
  18. Rocca B., FitzGerald G.A. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. International immunopharmacology, 2, 603–30. DOI: 10.1016/S1567-5769(01)00204-1CrossRefGoogle Scholar
  19. Sen S., Roy K., Mukherjee S., Mukhopadhyay R., Roy S. 2011. Restoration of IFNγR subunit assembly, IFNγ signaling and parasite clearance in Leishmania donovani infected macrophages: role of membrane cholesterol. PLoS Pathogens, 7, e1002229. DOI: 10.1371/journal.ppat.100222CrossRefGoogle Scholar
  20. Sypek J.P., Chung C.L., Mayor S.E., Subramanyam J.M., Goldman S.J., Sieburth D.S., Wolf S.F., Schaub R.G. 1993. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. The Journal of Experimental Medicine, 177, 1797–802. DOI: 10.1084/jem.177.6.1797CrossRefGoogle Scholar
  21. Tripathi K., Kumar R., Bharti K., Kumar P., Shrivastav R., Sundar S., Pai K. 2008. Adenosine deaminase activity in sera of patients with visceral leishmaniasis in India. Clinica Chimica Acta, International Journal of Clinical Chemistry, 388, 135–8. DOI: 10.1016/j.cca.2007.10.022CrossRefGoogle Scholar
  22. Ungerer J.P., Oosthuizen H.M., Bissbort S.H., Vermaak W.J. 1992. Serum adenosine deaminase: isoenzymes and diagnostic application. Clinical Chemistry, 38, 1322–6PubMedGoogle Scholar
  23. Wilson D.K., Rudolph F.B., Quiocho F.A. 1991. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science, 252, 1278–84. DOI: 10.1126/science.1925539CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Ambak K. Rai
    • 1
    Email author
  • Prabin Kumar
    • 2
  • Sheetal Saini
    • 1
  • Chandreshwar P. Thakur
    • 3
  • Tulika Seth
    • 4
  • Dipendra K. Dipendra
    • 2
    Email author
  1. 1.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia
  2. 2.Department of Transplant Immunology & ImmunogeneticsAll India Institute of Medical SciencesNew DelhiIndia
  3. 3.Balaji Utthan SansthanPatnaIndia
  4. 4.Department of HematologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations