Advertisement

Acta Parasitologica

, Volume 61, Issue 2, pp 376–381 | Cite as

Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis

  • Zubeyde Akin PolatEmail author
  • Ali Cetin
  • Poul B. Savage
Article

Abstract

Trichomonosis, caused by the protozoan parasite Trichomonas vaginalis, is a curable sexually transmitted disease that is most commonly encountered worldwide. Increasing importance of trichomoniasis and emerging of resistance against metronidazole lead to search for alternative drugs with different mode of activity. The purpose of this study was to determine in vitro activity of ceragenins (CSA-13, CSA-44, CSA-13, and CSA-138) against the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis. The effective concentrations were evaluated using two strains of T. vaginalis with different metronidazole susceptibilities (ATCC 30001 and ATCC 50138) in the presence of dilution series of ceragenins in 24-well microtitre assays. Overall, all the ceragenins killed the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis (p>0.05). With regard to the their effects against the studied strains of T. vaginalis, in order of effectiveness, overall, the ceragenins ordered as CSA-13 (the most effective), CSA-131 and CSA-138 (effective similarly), and CSA-44 (the least effective) (p<0.05). All of the ceragenins reduced the trophozoite numbers of both of studied strains of T. vaginalis with a time- and dose- dependent manner (p<0.05). Although all of the study ceragenins, CSA-13, CSA-44, CSA-13, and CSA-138, killed the studied strains of T. vaginalis. CSA-13 is the leading ceragenin as the most effective anti-trichomonas compound, followed by CSA-131 and CSA-138. They have a potential to have a place in the armemantarium of gynecologic and urologic practice for the management of sexually transmitted diseases.

Keywords

Trichomonas vaginalis ceragenin CSA in vitro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthan D., Sithiprom S., Thima K., Limmatvatirat C., Chavalitshewinkoon-Petmitr P., Svasti J. 2008. Inhibitory effects of Thai plants beta-glycosides on Trichomonas vaginalis. Parasitology Research 103, 443–448. DOI: 10.1007/s00436-008-0996-2CrossRefGoogle Scholar
  2. Bozkurt-Guzel C., Savage P.B., Akcali A., Ozbek-Celik B. 2014. Potential synergy activity of the novel ceragenin, CSA-13, against carbapenem-resistant Acinetobacter baumannii strains isolated from bacteremia patients. BioMed Research International DOI: 10.1155/2014/710273Google Scholar
  3. Chin J.N., Rybak M.J., Cheung C.M., Savage P.B. 2007. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 51, 1268–1273. DOI: 10.1128/AAC.01325-06CrossRefGoogle Scholar
  4. Epand R.F., Pollard J.E., Wright J.O., Savage P.B., Epand R.M. 2010. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrobial Agents and Chemotherapy 54, 3708–3713. DOI: 10.1128/AAC.00380-10CrossRefGoogle Scholar
  5. Epand R.M., Epand R.F., Savage P.B.. 2008. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News & Perspectives 21, 307–311. DOI: 10.1358/dnp.2008.21.6.1246829CrossRefGoogle Scholar
  6. Fastring D.R., Amedee A., Gatski M., Clark R.A., Mena L.A., Levison J., Schmidt N., Rice J., Gustat J., Kissinger P. 2014. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA. Sexually Transmitted Diseases, 41, 173–179. DOI: 10.1097/OLQ.0000000000000089CrossRefGoogle Scholar
  7. Figueroa-Angulo E.E., Rendón-Gandarilla F.J., Puente-Rivera J., Calla-Choque J.S., Cárdenas-Guerra R.E., Ortega-López J., Quintas-Granados L.I., Alvarez-Sánchez M.E., Arroyo R. 2012. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14, 1411–1427. DOI: 10.1016/j.micinf.2012.09.004CrossRefGoogle Scholar
  8. Frasson A.P., Santos O., Duarte M., da Silva Trentin D., Giordani R.B., da Silva A.G., da Silva M.V., Tasca T., Macedo A.J. 2012. First report of anti-Trichomonas vaginalis activity of the medicinal plant Polygala decumbens from the Brazilian semi-arid region, Caatinga. Parasitology Research 110, 2581–2587. DOI: 10.1007/s00436-011-2787-4CrossRefGoogle Scholar
  9. Hobbs M.M., Lapple D.M., Lawing L.F., Schwebke J.R., Cohen M.S., Swygard H., Atashili J., Leone P.A., Miller W.C., Seña A.C. 2006. Methods for detection of Trichomonas vaginalis in the male partners of infected women: implications for control of trichomoniasis. Journal Clinical Microbiology, 44, 3994–3999. DOI: 10.1128/JCM.00952-06CrossRefGoogle Scholar
  10. Ibrahim A.N. 2013. Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitology Research 112:2063–2067. DOI: 10.1007/s00436-013-3367-6CrossRefGoogle Scholar
  11. Innocente A.M., de Brum Vieira P., Frasson A.P., Casanova B.B., Gosmann G., Gnoatto S.C., Tasca T. 2014. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitology Research 113, 2933–2940. DOI: 10.1007/s00436-014-3955-0CrossRefGoogle Scholar
  12. Kirkcaldy R.D., Augostini P., Asbel L.E., Bernstein K.T., Kerani R.P., Mettenbrink C.J., Pathela P., Schwebke J.R., Secor W.E., Workowski K.A., Davis D., Braxton J., Weinstock H.S. 2012. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerging Infectious Diseases 18:939–943. DOI: 10.3201/eid1806.111590CrossRefGoogle Scholar
  13. Kissinger P., Amedee A., Clark R.A., Dumestre J., Theall K.P., Myers L., Hagensee M.E., Farley T.A., Martin D.H. 2009. Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sexually Transmitted Diseases, 36, 11–16. DOI: 10.1097/OLQ.0b013e318186decfCrossRefGoogle Scholar
  14. Lai X.Z., Feng Y., Pollard J., Chin J.N., Rybak M.J., Bucki R., Epand R.F., Epand R.M., Savage P.B. 2008. Ceragenins: cholic acidbased mimics of antimicrobial peptides. Accounts of Chemical Research 41, 1233–1240. DOI: 10.1021/ar700270tCrossRefGoogle Scholar
  15. Lara D., Feng Y., Bader J., Savage P.B., Maldonado R.A. 2010. Antitrypanosomatid activity of ceragenins. Journal of Parasitology 96: 638–642. DOI: 10.1645/GE-2329.1CrossRefGoogle Scholar
  16. Leitsch D., Burgess A.G., Dunn L.A., Krauer K.G., Tan K., Duchêne M., Upcroft P., Eckmann L., Upcroft J.A. 2011. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. Antimicrobial Agents and Chemotherapy 66, 1756–1765. DOI: 10.1093/jac/dkr192CrossRefGoogle Scholar
  17. Munson K.L., Napierala M., Munson E., Schell R.F., Kramme T., Miller C., Hryciuk J.E. 2013. Screening of male patients for Trichomonas vaginalis with transcription-mediated amplification in a community with a high prevalence of sexually transmitted infection. Journal Clinical Microbiology, 51, 101–104. DOI: 10.1128/JCM.02526-12CrossRefGoogle Scholar
  18. Narcisi E.M., Secor W.E. 1996. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy 40, 1121–1125CrossRefGoogle Scholar
  19. Pal D., Banerjee S., Cui J., Schwartz A., Ghosh S.K., Samuelson J. 2009. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrobial Agents and Chemotherapy 53, 458–464. DOI: 10.1128/AAC.00909-08CrossRefGoogle Scholar
  20. Pollard J.E., Snarr J., Chaudhary V., Jennings J.D., Shaw H., Christiansen B., Wright J., Jia W., Bishop R.E., Savage P.B. 2012. In vitro evaluation of the potential for resistance development to ceragenin CSA-13. Antimicrobial Agents and Chemotherapy 67:2665–2672. DOI: 10.1093/jac/dks276CrossRefGoogle Scholar
  21. Rocha D.A., de Andrade Rosa I., Urbina J.A., de Souza W., Benchimol M. 2014. The effect of 3-(biphenyl-4-yl)-3-hydoxyquinuclidine (BPQ-OH) and metronidazole on Trichomonas vaginalis: a comparative study. Parasitology Research 113, 2185–2197. DOI: 10.1007/s00436-014-3871-3CrossRefGoogle Scholar
  22. Rocha T.D., de Brum Vieira P., Gnoatto S.C., Tasca T., Gosmann G. (2012) Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research 110, 2551–2556. DOI: 10.1007/s00436-011-2798-1CrossRefGoogle Scholar
  23. Savage P.B., Li C., Taotafa U., Ding B., Guan Q. 2002. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiology Letters 217, 1–7. DOI: 10.1111/j.1574-6968.2002.tb11448.xCrossRefGoogle Scholar
  24. Seña A.C., Bachmann L.H., Hobbs M.M. 2014. Persistent and recurrent Trichomonas vaginalis infections: epidemiology, treatment and management considerations. Expert Review of Anti-infective Therapy 12, 673–685. DOI: 10.1586/14787210.2014.887440CrossRefGoogle Scholar
  25. Sherrard J., Ison C., Moody J., Wainwright E., Wilson J., Sullivan A. 2014. United Kingdom National Guideline on the Management of Trichomonas vaginalis. International Journal of STD & AIDS, 25, 541–549. DOI: 10.1177/0956462414525947CrossRefGoogle Scholar
  26. Silver B.J., Guy R.J., Kaldor J.M., Jamil M.S., Rumbold A.R. 2014. Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sexually Transmitted Diseases, 41, 369–376. DOI: 10.1097/OLQ.0000000000000134CrossRefGoogle Scholar
  27. Smith L.M., Wang M., Zangwill K., Yeh S. 2002. Trichomonas vaginalis infection in a premature newborn. Journal of Perinatology, 22, 502–503. DOI:10.1038/sj.jp.7210714CrossRefGoogle Scholar
  28. Sobel J.D. 2014. Trichomoniasis. In: UpToDate, Post TW (Ed), Up- ToDate, Waltham, MA. (Accessed on June, 2014)Google Scholar
  29. WHO 2008. World Health Organization - global prevalence and incidence of selected curable sexually transmitted infections. WHO, Geneva SwitzerlandGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2016

Authors and Affiliations

  • Zubeyde Akin Polat
    • 1
    Email author
  • Ali Cetin
    • 2
  • Poul B. Savage
    • 3
  1. 1.Department of Medical ParasitologyCumhuriyet University School of MedicineSivasTurkey
  2. 2.Departments of Obstetrics and GynecologyCumhuriyet University School of MedicineSivasTurkey
  3. 3.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations