Acta Parasitologica

, Volume 60, Issue 2, pp 337–344 | Cite as

Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites

  • Klaudia Brodaczewska
  • Katarzyna Donskow-Łysoniewska
  • Maria DoligalskaEmail author
Research Note


The probability of infection with fungi, as well as parasitic nematodes or arthropods may increase in overcrowded population of animals and human. The widespread overuse of drugs and immunosuppressants for veterinary or medical treatment create an opportunity for many pathogenic species. The aim of the review is to present the common molecular characteristics of such pathogens as fungi and nematodes and other chitin bearing animals, which may both activate and downregulate the immune response of the host. Although these pathogens are evolutionary distinct and distant, they may provoke similar immune mechanisms. The role of chitin in these phenomena will be reviewed, highlighting the immune reactions that may be induced in mammals by this natural polymer.


Chitin innate immunity parasitic infections immunoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez F.J. 2014. The effect of chitin size, shape, source and purification method on immune recognition. Molecules, 19, 4433–4451. DOI: 10.3390/molecules19044433PubMedPubMedCentralCrossRefGoogle Scholar
  2. Araujo A.C., Souto-Padron T., de Souza W. 1993. Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. Journal of Histochemistry and Cytochemistry, 41, 571–578. DOI: 10.1177/41. 4.8450196PubMedCrossRefGoogle Scholar
  3. Arnold K., Brydon L.J., Chappell L.H., Gooday G.W. 1993. Chitinolytic activities in Heligmosomoides polygyrus and their role in egg hatching. Molecular and Biochemical Parasitology, 58, 317–323. DOI: 10.1016/0166-6851(93)90054-2PubMedCrossRefGoogle Scholar
  4. Bajaj G., Van Alstine W.G., Yeo Y. 2012. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS ONE, 7, e30899. DOI: 10.1371/journal.pone.0030899PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bass D.A., Szejda P. 1979. Mechanisms of killing of newborn larvae of Trichinella spiralis by neutrophils and eosinophils killing by generation of hydrogen peroxide in vitro. The Journal of Clinical Investigation, 64, 1558–1564. DOI: org/10.1172/JCI109616PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brodaczewska K., Doligalska M. 2012. In vivo stimulation of peritoneal cells by chitosan administered in drinking water to mice. Progress on Chemistry and Application of Chitin and its Derivatives, 17, 107–112Google Scholar
  7. Brodaczewska K., Doligalska M. 2013. Differential effects of low and high molecular weight chitosan administered intraperitoneally to mice infected with Heligmosomoides polygyrus. Progress on Chemistry and Application of Chitin and its Derivatives, 18, 77–84Google Scholar
  8. Bueter C.L., Specht C.A., Levitz S.M. 2013. Innate Sensing of Chitin and Chitosan. Plos Pathogens, 9, e1003080. DOI: 10.1371/journal.ppat.1003080PubMedPubMedCentralCrossRefGoogle Scholar
  9. Canali M.M., Porporatto C., Pilar A.M., Bianco I.D., Correa S.G. 2010. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine, 28, 5718–5724. DOI: 10.1016/j.vaccine.2010.06.027PubMedCrossRefGoogle Scholar
  10. Cancrini G. 2006. Human infections due to nematode helminths nowadays: epidemiology and diagnostic tools. Parassitologia, 48, 53–56PubMedGoogle Scholar
  11. Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313, 1126–1130. DOI: 10.1126/science.1127119PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chai L.Y.A., Netea M.G., Vonk A.G., Kullberg B-J. 2009. Fungal strategies for overcoming host innate immune response. Medical Mycology, 47, 227–236. DOI: 10.1080/13693780802209082PubMedCrossRefGoogle Scholar
  13. Chang N.C.A., Hung S.I., Hwa K.Y., Kato I., Chen J.E., Liu C.H., Chang A.C. 2001. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. Journal of Biological Chemistry, 276, 17497–17506. DOI: 10.1074/jbc.M010417200PubMedCrossRefGoogle Scholar
  14. Chen F., Liu Z., Wu W., Rozo C., Bowdridge S., Millman A., van Rooijen N., Urban J.F., Wynn T.A., Gause W.C. 2012. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine, 18, 260–266. DOI: 10.1038/nm.2628PubMedPubMedCentralCrossRefGoogle Scholar
  15. Da Silva C.A., Chalouni C., Williams A., Hartl D., Lee C.G., Elias J.A. 2009. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. Journal of Immunology, 182, 3573–3582. DOI: 10.4049/jimmunol.0802113CrossRefGoogle Scholar
  16. Da Silva C.A., Hartl D., Liu W., Lee C.G., Elias J.A. 2008. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. The Journal of Immunology, 181, 4279–4286. DOI: 10.4049/jimmunol.181.6.4279PubMedCrossRefGoogle Scholar
  17. Denkers E.Y., Wassom D.L., Hayes C.E. 1990. Characterization of Trichinella spiralis antigens sharing an immunodominant, carbohydrate-associated determinant distinct from phosphorylcholine. Molecular and Biochemical Parasitology, 41, 241–249. DOI: org/10.1016/0166-6851(90)90187-QPubMedCrossRefGoogle Scholar
  18. Doligalska M., Rzepecka J., Drela N., Donskow K., Gerwel-Wronka M. 2006. The role of TGF-β in mice infected with Heligmosomoides polygyrus. Parasite Immunology, 28, 387–395. DOI: 10.1111/j.1365-3024.2006.00845.xPubMedCrossRefGoogle Scholar
  19. Everts B., Smits H.H., Hokke C.H., Yazdanbakhsh M. 2010. Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. European Journal of Immunology, 40, 1525–1537. DOI: 10.1002/eji.200940109PubMedCrossRefGoogle Scholar
  20. Gebreselassie N.G., Moorhead A.R., Fabre V., Gagliardo L.F., Lee N.A., Lee J.J., Appleton J.A. 2012. Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of Immunology, 188, 417–425. DOI: 10.4049/jimmunol.1101980CrossRefGoogle Scholar
  21. Geng J., Plenefisch J., Komuniecki P.R., Komuniecki R. 2002. Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Molecular and Biochemical Parasitology, 124, 11–21. DOI: org/10.1016/S0166-6851(02)00155-XPubMedCrossRefGoogle Scholar
  22. Grigorian A., Araujo L., Naidu N.N., Place D.J., Choudhury B., Demetriou M. 2011. N-acetylglucosamine inhibits T-helper 1(Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. The Journal of Biological Chemistry, 286, 40133–40141. DOI: 10.1074/jbc.M111.277814PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hamann K.H., Barker R.L., Loegering D.A., Gleich G.J. 1987. Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. Journal of Parasitology, 73, 523–529. DOI: 10.2307/3282130PubMedCrossRefGoogle Scholar
  24. Harbord M., Novelli M., Canas B., Power D., Davis C., Godovac-Zimmermann J., Roes J., Segal A.W. 2002. Ym1 Is a Neutrophil Granule Protein That Crystallizes in p47phox-deficient Mice. Journal of Biological Chemistry, 277, 5468–5475. DOI: 10.1074/jbc.M110635200PubMedCrossRefGoogle Scholar
  25. Heath-Heckman E.A.C., McFall-Ngai M.J. 2011. The occurrence of chitin in the hemocytes of invertebrates. Zoology, 114, 191–198. DOI:10.1016/j.zool.2011.02.002PubMedCrossRefGoogle Scholar
  26. Holcomb I.N., Kabakoff R.C., Chan B., Baker T.W., Gurney A., Henzel W., Nelson C., Lowman H.B., Wright B.D., Skelton N.J., Frantz G.D., Tumas D.B., Peale F.V., Jr, Shelton D.L., Hebert C.C. 2000. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. The EMBO Journal, 19, 4046–4055. DOI: 10.1093/emboj/19.15.4046PubMedPubMedCentralCrossRefGoogle Scholar
  27. Huber S., Hoffmann R., Muskens F., Voehringer D. 2010. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood, 116, 3311–3320. DOI: 10.1182/blood-2010-02-271981PubMedCrossRefGoogle Scholar
  28. Jarmila V., Vavrikova E. 2011. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Current Pharmaceutical Design, 17, 3596–3607. DOI: 10.2174/1381612 11798194468PubMedCrossRefGoogle Scholar
  29. Kaushal N.A., Simpson A.J., Hussain R., Ottesen E.A. 1984. Brugia malayi: stage-specific expression of carbohydrates containing N-acetyl-D-glucosamine on the sheathed surfaces of microfilariae. Experimental Parasitology, 58, 182–187. DOI: 10.1016/0014-4894(84)90033-XPubMedCrossRefGoogle Scholar
  30. Koller B., Muller-Wiefel A.S., Rupec R., Korting H.C., Ruzicka T. 2011. Chitin modulates innate immune responses of keratinocytes. PloS One, 6, e16594. DOI: 10.1371/journal.pone.0016594PubMedPubMedCentralCrossRefGoogle Scholar
  31. Konopka J.B. 2012. N-acetylglucosamine functions in cell signaling. Scientifica, Article ID 489208. DOI: org/10.6064/2012/489208Google Scholar
  32. Kreindler J.L., Steele C., Nguyen N., Chan Y.R., Pilewski J.M., Alcorn J.F., Vyas Y.M., Aujla S.J., Finelli P., Blanchard M., Zeigler S.F., Logar A., Hartigan E., Kurs-Lasky M., Rockette H., Ray A., Kolls J.K. 2010. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. The Journal of Clinical Investigation, 120, 3242–3254. DOI: 10.1172/JCI42388PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kuroda E., Yoshida Y., En Shan B., Yamashita U. 2001. Suppression of macrophage interleukin-12 and tumour necrosis factoralpha production in mice infected with Toxocara canis. Parasite Immunology, 23, 305–311. DOI: 10.1046/j.1365-3024.2001.00387PubMedCrossRefGoogle Scholar
  34. Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M-J., He C-H., Takyar S., Elias J.A. 2011. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology, 73, 479–501. DOI: 10.1146/annurev-physiol-012110-142250PubMedCrossRefGoogle Scholar
  35. Lee C.G., Da Silva C.A., Lee J.Y., Hartl D., Elias J.A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Current Opinion in Immunology, 20, 684–689. DOI: 10.1016/j.coi.2008.10.002PubMedPubMedCentralCrossRefGoogle Scholar
  36. Liu Q., Arseculeratne C., Liu Z., Whitmire J., Grusby M.J., Finkelman F.D., Darling T.N., Cheever A.W., Swearengen J., Urban J.F., Gause W.C. 2004. Simultaneous deficiency in CD28 and STAT6 results in chronic ectoparasite-induced inflammatory skin disease. Infection and Immunity, 72, 3706–3715. DOI: 10.1128/IAI.72.7.3706-3715.2004PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lucas A.H., Rittenhouse-Olson K., Kronenberg M., Apicella M.A., Wang D., Schreiber J.R., Taylor C.E. 2010. Carbohydrate moieties as vaccine candidates: Meeting summary. Vaccine, 28, 1121–1131. DOI: 10.1016/j.vaccine.2008.05.055PubMedCrossRefGoogle Scholar
  38. Lysek H., Malinsky J., Janisch R. 1985. Ultrastructure of eggs of Ascaris lumbricoides Linnaeus, 1758. I. Egg-Shells. Folia Parasitologica, 32, 381–384PubMedGoogle Scholar
  39. Malinovsky F.G., Fangel J.U., Willats W.G. 2014. The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178. DOI: 10.3389/fpls.2014.00178PubMedPubMedCentralCrossRefGoogle Scholar
  40. Marcello M.R., Singaravelu G., Singson A. 2013. Fertilization. In: (Eds. Schedl T.) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, 757. Springer Science+Business Media New York, 321–350. DOI: 10.1007/978-1-4614-4015-4_11Google Scholar
  41. Masure D., Vlaminck J., Wang T., Chiers K., Van den Broeck W., Vercruysse J., Geldhof P. 2013. A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. PLOS, Neglected Tropical Diseases, 7, e2138. DOI: 10. 1371/journal.pntd.0002138CrossRefGoogle Scholar
  42. Matsuwaki Y., Wada K., Moriyama H., Kita H. 2011. Human eosinophil innate response to Alternaria Fungus through protease-activated receptor-2. International Archives of Allergy and Immunology, 155, 123–128. DOI: 10.1159/000327498PubMedCrossRefGoogle Scholar
  43. McSorley H.J., Maizels R.M. 2012. Helminth infections and host immune regulation. Clinical Microbiology Reviews, 25, 585–608. DOI: 10.1128/CMR.05040-11PubMedPubMedCentralCrossRefGoogle Scholar
  44. Merzendorfer H., Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 206, 4393–4412. DOI: 10.1242/jeb.00709PubMedCrossRefGoogle Scholar
  45. Mitreva M., Jasmer D.P., Zarlenga D.S., Wang Z., Abubucker S., Martin J., Taylor C.M., Yin Y., Fulton L., Minx P., Yang S.P., Warren W.C., Fulton R.S., Bhonagiri V., Zhang X., Hallsworth-Pepin K., Clifton S.W., McCarter J.P. Wilson R.K. 2011. The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 43, 228–235. DOI: 10.1038/ng.769PubMedPubMedCentralCrossRefGoogle Scholar
  46. Montovani A., Sica A., Locati M. 2007. New vistas on macrophage differentiation and activation. European Journal of Immunology, 37, 14–16. DOI: 10.1002/eji.200636910CrossRefGoogle Scholar
  47. Mora-Montes H.M., Netea M.G., Ferwerda G., Lenardon M.D., Brown G.D., Mistry A.R., Kullberg B.J., O’Callaghan C.A., Sheth C.C., Odds F.C, Brown A.J.P., Munro C.A., Gow, N.A. 2011. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infection and Immunity, 79, 1961–1970. DOI: 10.1128/IAI.01282-10PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nair M.G., Gallagher I.J., Taylor M.D., Loke P.N., Coulson P.S., Wilson R.A., Maizels R.M., Allen J.E. 2005. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infection and Immunity, 73, 385–394. DOI: 10.1128/IAI.73.1.385-394.2005PubMedPubMedCentralCrossRefGoogle Scholar
  49. Neuhaus B., Bresciani J., Christensen C.M., Sommer C. 1997. Morphological variation of the corona radiata in Oesophagostomum dentatum, O-quadrispinulatum, and O-radiatum (Nematoda: Strongyloidea). Journal of the Helminthological Society of Washington, 64, 128–136Google Scholar
  50. Ngo D.-N. 2012. Antioxidant, antimicrobial properties of chitin, chitosan and their derivatives. In: (Eds. Kim S.-K.) Chitin and Chitosan derivatives. Advanced in Drug Discovery and Developments. CRC Press Taylor and Francis Group, 201–212. DOI: 10.1201/b15636-14Google Scholar
  51. O’Dea E.M., Amarsaikhan N., Li H., Downey J., Steele E., Van Dyken S.J., Locksley R.M., Templeton S.P. 2014. Eosinophils are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus infection. Infection and Immunity, 82, 3199–3205. DOI: 10.1128/IAI.01990-14PubMedPubMedCentralCrossRefGoogle Scholar
  52. Overdijk B., Van Steijn G.J., Odds F.C. 1996. Chitinase levels in guinea pig blood are increased after systemic infection with Aspergillus fumigatus. Glycobiology, 6, 627–634. DOI: 10.1093/glycob/6.6.627PubMedCrossRefGoogle Scholar
  53. Paliwal R., Paliwal S.R., Agrawal G.P., Vyas S.P. 2012. Chitosan nanoconstructs forimproved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. International Journal of Pharmacy, 422, 179–184. DOI: 10.1016/j.ijpharm. 2011.10.048CrossRefGoogle Scholar
  54. Pilarczyk B., Doligalska M.J., Donskow-Schmelter K., Balicka-Ramisz A., Ramisz A. 2008. Selenium supplementation enhances the protective response to Toxocara canis larvae in mice. Parasite Immunology, 30, 394–402. DOI: 10.1111/j.1365-3024.2008.01039.xPubMedCrossRefGoogle Scholar
  55. Pillai C.K.S., Paul W., Sharma C.P. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34, 641–678. DOI: org/10.1016/j.progpolymsci.2009.04.001CrossRefGoogle Scholar
  56. Pinelli E., Aranzamendi C. 2012. Toxocara infection and its association with allergic manifestations. Endocrine Metabolic & Immune Disorders Drug Targets, 12, 33–44. DOI: 10.2174/187153012799278956CrossRefGoogle Scholar
  57. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–2088. DOI: 10.1126/science.282.5396.2085PubMedCrossRefGoogle Scholar
  58. Porporatto C., Bianco I.D., Cabanillas A.M., Correa S.G. 2004. Early events associated to the oral co-administration of type II collagen and chitosan: induction of anti-inflammatory cytokines. International Immunology, 16, 433–441. DOI: 10.1093/intimm/dxh051PubMedCrossRefGoogle Scholar
  59. Porporatto C., Bianco I.D., Correa S.G. 2005. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. Journal of Leukocyte Biology, 78, 62–69. DOI: 10.1189/jlb.0904541PubMedCrossRefGoogle Scholar
  60. Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009a. Ability of the polysaccharide chitosan to inhibit proliferation of CD4+ lymphocytes from mucosal inductive sites, in vitro and in vivo. Cell Proliferation, 42, 780–787. DOI: 10.1111/j.1365-2184.2009.00634.xPubMedCrossRefGoogle Scholar
  61. Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009b. The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen. Clinical and Experimental Immunology, 155, 79–87. DOI: 10.1111/j.1365-2249.2008.03777.xPubMedPubMedCentralCrossRefGoogle Scholar
  62. Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 447, 92–96. DOI: 10.1038/nature05746PubMedPubMedCentralCrossRefGoogle Scholar
  63. Richardson M.D. 2005. Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy, 56, i5–i11. DOI: 10.1093/jac/dki218PubMedCrossRefGoogle Scholar
  64. Romani L. 2004. Immunity to fungal infections. Nature Reviews Immunology, 4, 11–24. DOI: 10.1038/nri1255CrossRefGoogle Scholar
  65. Roy R.M., Wuthrich M., Klein B.S. 2012. Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. The Journal of Immunology, 189, 2545–2552. DOI: 10.4049/jimmunol.1200689PubMedCrossRefGoogle Scholar
  66. Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., Kumagai Y., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K., Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K., Nakai K, Akira, S. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology, 11, 936–944. DOI: 10.3410/j.6283956.6364054PubMedCrossRefGoogle Scholar
  67. Schlosser A., Thomsen T., Moeller J.B., Nielsen O., Tornoe I., Mollenhauer J., Moestrup S.K, Holmskov U. 2009. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. The Journal of Immunology, 183, 3800–3809. DOI: 10.4049/jimmunol.0901526PubMedCrossRefGoogle Scholar
  68. Shamri R., Xenakis J.J., Spencer L.A. 2011. Eosinophils in innate immunity: an evolving story. Cell and Tissue Research, 343, 57–83. DOI: 10.1007/s00441-010-1049-6PubMedCrossRefGoogle Scholar
  69. Shibata Y., Honda I., Justice J.P., Van Scott MR., Nakamura R.M., Myrvik Q.N. 2001. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infection and Immunity, 69, 6123–6130. DOI: 10.1128/IAI.69.10.6123-6130.2001PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shibata Y., Metzger W.J., Myrvik Q.N. 1997. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. The Journal of Immunology, 159, 2462–2467PubMedGoogle Scholar
  71. Suginta W., Robertson P.A., Austin B., Fry S.C., Fothergill-Gillmore L.A. 2000. Chitinases from vibrio: Activity screening and purification of chiA from Vibrio carchariae. Journal of Applied Microbiology, 89, 76–84. DOI: 10.1046/j.1365-2672. 2000.01076.xPubMedCrossRefGoogle Scholar
  72. Sukhithasri V., Nisha N., Biswas L., Kumar, V.A., Biswas R. 2013. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406. DOI: 10.16/j.micres.2013.02.005PubMedCrossRefGoogle Scholar
  73. Sullivan B.A., Nagarajan N.A., Wingender G., Wang J., Scott I., Tsuji M., Franck R.W., Porcelli S.A., Zajonc D.M., Kronenberg M. 2010. Mechanisms for glycolipid antigen-driven cytokine polarization by Va14i NKT cells. The Journal of Immunology, 184, 141–153. DOI: 10.4049/jimmunol.0902880PubMedCrossRefGoogle Scholar
  74. Tachu B., Pillai S., Lucius R., Pogonka T. 2008. Essential Role of Chitinase in the Development of the Filarial Nematode Acanthocheilonema viteae. Infection and Immunity, 76, 221–228. DOI: 10.1128/IAI.00701-07PubMedCrossRefGoogle Scholar
  75. Tharanathan R.N., Kittur F.S. 2003. Chitin: the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43, 61–87. DOI: 10.1080/10408690390826455PubMedCrossRefGoogle Scholar
  76. Van Dyken S.J., Mohapatra A., Nussbaum J.C., Molofsky A.B., Thornton E.E., Ziegler S.F., McKenzie A.N.J., Krummel M.F., Liang H-E., Locksley R.M. 2014. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid Type 2 and gd T cells. Immunity, 40, 414–424. DOI: 10.1016/j.immuni.2014.02.003PubMedPubMedCentralCrossRefGoogle Scholar
  77. Vega K., Kalkum M. 2012. Chitin, Chitinase responses and invasive fungal infections. International Journal of Microbiology, Article ID 920459. DOI: org/10.1155/2012/920459Google Scholar
  78. Venturiello S.M., Verzoletti M.L., Costantino S.N., Forastiero M.A., Roux M.E. 2007. Early pulmonary response in rats infected with Trichinella spiralis. Parasitology, 134, 281–288. DOI: Scholar
  79. Veronico P., Gray L.J., Jones J.T., Bazzicalupo P., Arbucci S., Cortese M.R., Di Vito M., De Giorgi C. 2001. Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Molecular Genetics and Genomics, 266, 28–34. DOI: 10.1007/s004380100513PubMedCrossRefGoogle Scholar
  80. Wagener J., Malireddi R.S., Lenardon M.D., Koberle M., Vautier S., MacCallum D.M., Biedermann T., Schaller M., Netea M. G., Kanneganti T.D., Brown G.D., Brown A.J.P., Gow N.A. 2014. Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 10, e1004050. DOI: 10.1371/journal.ppat.1004050PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wagner C.J., Huber S., Wirth S., Voehringer D. 2010. Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation. European Journal of Immunology, 40, 2882–2890. DOI: 10.1002/eji.201040422PubMedCrossRefGoogle Scholar
  82. Walton S.F., Pizzutto S., Slender A., Viberg L., Holt D., Hales B.J., Kemp D.J., Currie B.J., Rolland J.M., O’Hehir R. 2010. Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clinical and Vaccine Immunology, 17, 1428–1438. DOI: 10.1128/CVI.00195-10PubMedCrossRefGoogle Scholar
  83. Wharton D.A. 1980. Nematode egg-shells. Parasitology, 81, 447–463. DOI: org/10.1017/S003118200005616XPubMedCrossRefGoogle Scholar
  84. Yasuda K., Matsumoto M., Nakanishi K. 2014. Importance of both innate immunity and acquired immunity for rapid expulsion of S. venezuelensis. Frontiers in Immunology, 5, 118. DOI: 10.3389/fimmu.2014.00118PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yoon J., Ponikau J.U., Lawrence C.B., Kita H. 2008. Innate antifungal immunity of human eosinophils mediated by a integrin, CD11b. The Journal of Immunology, 181, 2907–2915. DOI: 10.4049/jimmunol.181.4.2907PubMedCrossRefGoogle Scholar
  86. Zhang Y., Foster J.M., Nelson L.S., Ma D., Carlow C.K. 2005. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology, 285, 330–339. DOI: org/10.1016/j.ydbio.2005.06.037PubMedCrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2015

Authors and Affiliations

  • Klaudia Brodaczewska
    • 1
  • Katarzyna Donskow-Łysoniewska
    • 1
  • Maria Doligalska
    • 1
    Email author
  1. 1.Department of Parasitology, Faculty of BiologyUniversity of WarsawWarsawPoland

Personalised recommendations