Advertisement

Acta Parasitologica

, Volume 60, Issue 2, pp 190–195 | Cite as

Evaluation of Eimeria krijgsmanni as a murine model for testing the efficacy of anti-parasitic agents

  • Toshinori Takeo
  • Tetsuya Tanaka
  • Makoto Matsubayashi
  • Masashi Tsujio
  • Rika Umemiya-Shirafuji
  • Naotoshi Tsuji
  • Kozo Fujisaki
  • Toshihiro Matsui
  • Tomohide Matsuo
Article

Abstract

Murine Eimeria spp. have been used as effective models of disease instead of large mammalian hosts such as cattle. We attempted to establish in vivo and in vitro assays using a murine intestinal protozoan, Eimeria krijgsmanni, which we previously isolated, to test anti-parasitic agents. Consequently, when mice were treated with sulfur drugs or toltrazuril, which are commercially available for livestock. Furthermore, sporulated oocysts and excysted sporozoites of E. krijgsmanni were treated with naturally occurring substances (lactoferrin, longicin, and curcumin). Although exposure to these substances did not affect oocyst infectivity, sporozoite viability decreased by 60% with longicin. However, direct injection of sporozoites treated with longicin into mice ceca did not result in any changes in the oocyst shedding pattern compared with control mice. The results suggest that E. krijgsmanni could be resistant to these anti-parasitic agents and might therefore have different characteristics to other apicomplexan parasites.

Keywords

Eimeria krijgsmanni mouse sulfur drug lactoferrin longicin curcumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman H.D. 1997. Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathology, 26, 221–244. DOI: 10.1080/03079459708419208CrossRefGoogle Scholar
  2. Cirioni O., Giacometti A., Barchiesi F., Scalise G. 2000. Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline. Journal of Antimicrobial Chemotherapy, 46, 577–582. DOI: 10.1093/jac/46.4.577CrossRefGoogle Scholar
  3. Daugschies A., Najdrowski M. 2005. Eimeriosis in cattle: current understanding. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health, 52, 417–427. DOI: 10.1111/j.1439-0450.2005.00894.xCrossRefGoogle Scholar
  4. Drago-Serrano M.E., Rivera-Aguilar V., Reséndiz-Albor A.A., Campos-Rodriguez R. 2010. Lactoferrin increases both resistance to Salmonella typhimurium infection and the production of antibodies in mice. Immunology Letters, 134, 35–46. DOI: 10.1016/j.imlet.2010.08.007CrossRefGoogle Scholar
  5. González-Chávez S.A., Arévalo-Gallegos S., Rascón-Cruz Q. 2009. Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, 33, 301. e1-8. DOI: 10.1016/j.ijantimicag.2008.07.020Google Scholar
  6. Hasbullah, Itahana H., Uchida T., Inamoto T., Nakai Y., Ogimoto K. 1996. Medication of feedlot calves infected with Eimeria spp. by a combination of sulfamonomethoxine and ormetoprim. Journal of Veterinary Medical Science, 58, 169–170.CrossRefGoogle Scholar
  7. Hashimoto K., Tanaka T., Matsubayashi M., Endo K., Umemiya-Shirafuji R., Matsui T., Matsuo T. 2014. Host specificity and in vivo infectivities of the mouse coccidian parasites Eimeria krijgsmanni. Acta Parasitologica, 59, 337–342. DOI: 10.2478/s11686-014-0251-1CrossRefGoogle Scholar
  8. Isamida T., Tanaka T., Omata Y., Yamauchi K., Shimazaki K., Saito A. 1998. Protective effect of lactoferricin against Toxoplasma gondii infection in mice. Journal of Veterinary Medical Science, 60, 241–244. DOI: 10.1292/jvms.60.241CrossRefGoogle Scholar
  9. Jaruga E, Sokal A, Chrul S, Bartosz G. 1998 Apoptosis-independent alterations in membrane dynamics induced by curcumin. Experimental Cell Research, 245, 303–312. DOI: 10.1006/excr.1998.4225CrossRefGoogle Scholar
  10. Jonsson N.N., Piper E.K., Gray C.P., Deniz A., Constantinoiu C.C. 2011. Efficacy of toltrazuril 5% suspension against Eimeria bovis and Eimeria zurenii in calves and observations on the associated immunopathology. Parasitology Research, 109, S113–28. DOI: 10.1007/s00436-010-2129-yCrossRefGoogle Scholar
  11. Khalafalla R.E., Muller U., Shahiduzzaman M., Dyachenko V., Desouky A.Y., Alber G., Daugschies A. 2011. Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitology Research, 108, 879–886. DOI: 10.1007/s00436-010-2129-yCrossRefGoogle Scholar
  12. Kowalik S., Zahner H. 1999. Eimeria separata: method for the excystation of sporozoites. Parasitology Research, 85, 496–499. DOI: 10.1007/s004360050584CrossRefGoogle Scholar
  13. Linh B.K., Hayashi T., Horii Y. 2009. Eimeria vermiformis infection reduces goblet cells by multiplication in the crypt cells of the small intestine of C57BL/6 mice. Parasitology Research, 104, 789–794. DOI: 10.1007/s00436-008-1256-1CrossRefGoogle Scholar
  14. Matsubayashi M., Kimata I., Iseki M., Hajiri T., Tani H., Sasai K., Baba E. 2005. Infectivity of a novel type of Cryptosporidium andersoni to laboratory mice. Veterinary Parasitology, 129, 165–168. DOI: 10.1016/j.vetpar.2005.01.003CrossRefGoogle Scholar
  15. Matsui T., Fujino T., Kobayashi F., Morita T., Imai S. 2006. Life cycle of Eimeria krijgsmanni-like coccidium in the mouse (Mus musculus). Journal of Veterinary Medical Science, 68, 331–336. DOI: 10.1292/jvms.68.331CrossRefGoogle Scholar
  16. Mehlhorn H. (Ed.). 2008. Encyclopedic reference of parasitology. vol 1, 3rd edn. Springer, Berlin.Google Scholar
  17. Mundt H.C., Mundt-Wüstenberg S., Daugschies A., Joachim A. 2007. Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitology Research, 100, 401–411. DOI: 10.1007/s00436-006-0314-9CrossRefGoogle Scholar
  18. Nakai Y., Ogimoto K., Ohara E., Kato M. 1988. Anticoccidial activity of feed additive sulfamonomethoxine and ormethoprim in chickens. Japanese Journal of Zootechnical Science, 59, 523–526. doi: 10.2508/chikusan.59.523Google Scholar
  19. Ortiz-Estrada G., Luna-Castro S., Piña-Vázquez C., Samaniego-Barrón L., León-Sicairos N., Serrano-Luna J., de la Garza M. 2012. Iron-saturated lactoferrin and pathogenic protozoa: could this protein be an iron source for their parasitic style of life? Future Microbiology, 7, 149–164. DOI: 10.2217/fmb.11.140CrossRefGoogle Scholar
  20. Ovington K.S., Alleva L.M., Kerr E.A. 1995. Cytokines and immunological control of Eimeria spp. International Journal for Parasitology, 25, 1331–1351. DOI: 10.1016/0020-7519(95) 00069-ECrossRefGoogle Scholar
  21. Pérez-Arriaga L., Mendoza-Magaña M.L., Cortés-Zárate R., Corona-Rivera A., Bobadilla-Morales L., Troyo-Sanromán R., Ramirez-Herrera M.A. 2006. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Tropica, 98, 152–161. DOI: 10.1016/j.actatropica.2006.03.005CrossRefGoogle Scholar
  22. Rasmussen H.B., Christensen S.B., Kvist L.P., Karazmi A. 2000. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta medica, 66, 396–398. DOI: 10.1055/s-2000-8533CrossRefGoogle Scholar
  23. Schito M.L., Barta J.R., Chobotar B. 1996. Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. Journal of Parasitology, 82, 255–262. DOI: 10.2307/3284157CrossRefGoogle Scholar
  24. Sfeir R.M., Dubarry M., Boyaka P.N., Rautureau M., Tomé D. 2004. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. Journal of Nutrition, 134, 403–409.CrossRefGoogle Scholar
  25. Steinfelder S., Lucius R., Greif G., Pogonka T. 2005. Treatment of mice with the anticoccidial drug Toltrazuril does not interfere with the development of a specific cellular intestinal immune response to Eimeria falciformis. Parasitology Research, 97, 458–465. DOI: 10.1007/s00436-005-1464-xCrossRefGoogle Scholar
  26. Takeo T., Tanaka T., Matsubayashi M., Maeda H., Kusakisako K., Matsui T., Mochizuki M., Matsuo T. 2014. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis. Parasitology International, 63, 627–630. DOI: 10.1016/j.parint.2014.04.004CrossRefGoogle Scholar
  27. Tanaka T., Maeda H., Matsuo T., Umemiya-Shirafuji R., Kume A., Suzuki H., Xuan X., Tsuji N., Fujisaki K. 2012. Parasiticidal activity of Haemaphysalis longicornis longicin P4 peptide against Toxoplasma gondii. Peptides, 34, 242–50. DOI: 10.1016/j.peptides.2011.07.027CrossRefGoogle Scholar
  28. Tanaka T., Omata Y., Saito A., Shimazaki K., Igarashi I., Suzuki N. 1996. Growth inhibitory effects of bovine lactoferrin to Toxoplasma gondii parasites in murine somatic cells. Journal of Veterinary Medical Science, 158, 61–65. DOI: 10.1006/expr.1995.1157CrossRefGoogle Scholar
  29. Tsuji N., Fujisaki K. 2007. Longicin plays a crucial role in inhibiting the transmission of Babesia parasites in the vector tick Haemaphysalis longicornis. Future Microbiology, 2, 575–578.CrossRefGoogle Scholar
  30. Tsutsumi Y., Tsunoda K. 1971. Pathogenicity of Eimeria tsunodai for Japanese quails (Coturnis cotunix japonica) and susceptibility of the coccidium to some drugs. Nihon Juigaku Zasshi, 1971, 34:115–120.CrossRefGoogle Scholar
  31. Valenti P., Antonini G. 2005. Lactoferrin: an important host defence against microbial and viral attack. Cellular and Molecular Life Sciences, 62, 2576–2587. DOI: 10.1007/s00018-005-5372-0CrossRefGoogle Scholar
  32. Williams R.B. 1999. A compartmentalized model for the estimation of the cost of coccidiosis to the world’s chicken production industry. International Journal for Parasitology, 29, 1209–1229. DOI: 10.1016/S0020-7519(99)00086-7CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2015

Authors and Affiliations

  • Toshinori Takeo
    • 1
  • Tetsuya Tanaka
    • 2
  • Makoto Matsubayashi
    • 3
  • Masashi Tsujio
    • 4
  • Rika Umemiya-Shirafuji
    • 5
  • Naotoshi Tsuji
    • 3
  • Kozo Fujisaki
    • 6
  • Toshihiro Matsui
    • 7
  • Tomohide Matsuo
    • 1
  1. 1.Laboratory of Parasitology, Joint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
  2. 2.Laboratory of Infectious Diseases, Joint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
  3. 3.Bacterial and Parasitic Diseases Research Division, National Institute of Animal HealthNational Agriculture and Food Research OrganizationTsukuba, IbarakiJapan
  4. 4.Laboratory of Anatomy, Joint Faculty of Veterinary MedicineKagoshima UniversityKagoshimaJapan
  5. 5.National Research Center for Protozoan DiseasesObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  6. 6.National Agriculture and Food Research OrganizationTsukuba, IbarakiJapan
  7. 7.Seisen UniversityHigashi GotandaTokyoJapan

Personalised recommendations