Acta Parasitologica

, Volume 60, Issue 1, pp 35–39 | Cite as

Wild boar density drives Metastrongylus infection in earthworm

  • Gábor NagyEmail author
  • Ágnes Csivincsik
  • László Sugár


Larvae of Metastrongylus spp. lungworms infect wild boar (Sus scrofa) definitive hosts through earthworms (Lumbricidae). We compared the abundance and Metastrongylus spp. larval infection measures of earthworms between two areas (both in Zselic, Hungary, 2012) characterized by markedly different wild boar population densities. Estimated wild boar density was 0.03 animal/ha in free range area and 1.03 animal/ha in enclosure. The mean abundance of earthworm populations (mostly Allolobophora, Aporrectodea, and Lumbricus spp.) was assessed by analysing 140–140 soil samples. The assesment of Metastrongylus spp. larval infection measures was based on cca 100–100 earthworms derived from the two areas. The abundance of earthworms and their Metastrongylus spp. larval infection measures (prevalence and mean intensity) were significantly lower in the free range than in the enclosure. Furthermore, using a finer scale within the enclosure, we compared wild boar feeding sites (n = 30) to other sites (n = 75). Earthworm populations were significantly more abundant and carried significantly more prevalent and more abundant larval lungworm infections at the former sites. These results suggest that high wild boar density and forage supplementation in enclosures increase both the abundance and the larval Metastrongylus infections of earthworms.


Wild boar earthworm Metastrongylus density dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alicata J.E. 1935. Early developmental stages of nematodes occuring in swine. Technical Bulletin, No. 489, United States Department of Agriculture, Washington, D.C., 33–44Google Scholar
  2. Altizer S., Nunn C.L., Thrall P.H., Gittleman J.L., Antonovics J., Cunningham A.A., Dobson A.P., Ezenwa V., Jones K.E., Pedersen A.B., Poss M. and Pulliam, J.R.C. 2003. Social organization and parasite risk in mammals: integratingtheory and empirical studies. Annual Review of Ecology, Evolution and Systematics, 34: 517–547. DOI: 10.1146/annurev.ecolsys.34.030102.151725CrossRefGoogle Scholar
  3. Arneberg P., Skorping A., Grenfell B. and Read A.F. 1998. Host densities as determinants of abundance in parasites communites. Proceedings of Royal Society B, 265, 1283–1289. DOI: 10.98/rspb.1998.0431CrossRefGoogle Scholar
  4. Bagge A.M., Pouling R. and Valtonen E. T. 2008. Fish population size, and not density, as the determining factor of parasite infection: a case study. Parasitology, 128, 305–313. DOI: 10.1017/S0031182003004566CrossRefGoogle Scholar
  5. Bush A.O., Lafferty K.D., Lotz J.M. and Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583CrossRefGoogle Scholar
  6. Cross P.C., Drewe J., Patrek V., Pearce G., Samuel M.D. and Delahay R.J. 2009. Wildlife population structure and parasite transmission: implications for disease management In: Delahay R.J., Simth G.C. and Hutchings M.R (Eds) Management of Disease in Wild Mammals, Springer, e-ISBN: 978-4-431-77134-0, 9–29. DOI: 10.1007/978-4-431-77134-0CrossRefGoogle Scholar
  7. Hechinger R.F. and Lafferty K.D. 2005. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of Royal Society B, 272, 1059–1066. DOI:10.1098/rspb.2005.3070CrossRefGoogle Scholar
  8. Humbert J-F. and Henry C. 1989. Studies on prevalence and transmission of lung and stomach nematodes of the wild boar (Sus scrofa) in France. Journal of Wildlife Diseases, 25, 335–341. DOI: 10.7589/0090-3558-25.3.335CrossRefGoogle Scholar
  9. Jaliv H. and Kooch Y. 2012. Factors influence and distribution and abundance of earthworm communities in different forest types (man-made and natural forest). International Journal of Green and Herbal Chemistry, 1, 26–38. E-ISSN: 2278-3229Google Scholar
  10. Lindsey A., Mehta M., Dhulipala V., Oberhauser K., and Altizer S. 2009. Crowding and disease: effects of host density on response to infection in a butterflyparasite interaction. Ecological Entomology, 34: 551–561. DOI: 10.1111/j.1365-2311.2009.01107.xCrossRefGoogle Scholar
  11. Navarro-González N., Serrano E., Casas-Díaz E., Velarde R., Marco I., Rossi L. and Lavín S. 2010. Game restocking and the introduction of sarcoptic mange in wild rabbit in north-eastern Spain. Animal Conservation, 13: 586–591. DOI: 10.1111/j.1469-1795.2010.00390.xCrossRefGoogle Scholar
  12. Navarro-González N., Fernández-Llario P., Pérez E., Mentaberre, G., López-Martin J.M., Lavín S. and Serrano E. 2013. Supplemental feeding drives endoparasite infection in wild boar in Western Spain. Veterinary Parasitology, 196, 114–123. DOI: 10.1016/j.vetpar.2013.02.019CrossRefGoogle Scholar
  13. Reiczigel J. 2003. Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine, 22: 611–621. DOI: 10.1002/sim.1320)CrossRefGoogle Scholar
  14. Reiczigel J. and Rózsa L. 2005. Quantitative Parasitology 3.0, Scholar
  15. Richard B., Legras M., Margerie P., Mathieu J., Barot S., Caro G., Desjardins T., Dubs F., Dupont L. and Decaëns T. 2012. Spatial distribution of earthworm assemblages in pastures of northwestern France. European Journal of Soil Biology, 53, 62–69. DOI: 10.1016/j.ejsobi.2012.08.005CrossRefGoogle Scholar
  16. Riley H., Pommeresche R., Eltun R., Hansen S. and Korsaeth A. 2008. Soil structure, organic matter and earthworm activity of cropping systems with contrasting tillage, fertilizer levels and manure use. Agriculture, Ecosystem and Environment, 124, 275–284. DOI:10.1016/j.agee.2007.11.002CrossRefGoogle Scholar
  17. Saitoh T. and Takahashi K. 1998. The role of vole population in prevalence of parasite (Echinococcus multilocularis) in foxes. Researches on Population Ecology, 40, 97–105. DOI: 10.1007/BF02765225CrossRefGoogle Scholar
  18. Schwartz B. and Alicata J.E. 1934. Life history of lungworms parasitic in swine. Technical Bulletin, No. 456, United States Department of Agriculture, Washington, D.C., 1–41Google Scholar
  19. Vicente J., Höfle U., Garrido J.M., Fernández-de-Mera I.G., Acevedo P., Juste R., Barral M. and Gortázar C. 2007. Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Veterinary Research, 38, 451–464. DOI: 10.1051/vetres:2007002CrossRefGoogle Scholar
  20. Walker M., Hall A., Anderson R. M. and Basáñez M-G. 2009. Density-dependent effects on the weight of female Ascaris lumbricoides infections of humans and its impact on patterns of egg production. Parasites and Vectors 2, 11, DOI: 10.1186/1756-3305-2-11CrossRefGoogle Scholar

Copyright information

© W. Stefański Institute of Parasitology, PAS 2015

Authors and Affiliations

  • Gábor Nagy
    • 1
    Email author
  • Ágnes Csivincsik
    • 2
  • László Sugár
    • 1
  1. 1.Faculty of Agricultural and Environmental SciencesKaposvar UniversityKaposvárHungary
  2. 2.Government Office of Somogy CountyFood-chain Safety and Animal Health DirectorateKaposvárHungary

Personalised recommendations