Advertisement

Acta Geophysica

, Volume 64, Issue 5, pp 1779–1796 | Cite as

Flow Characteristics over a Gravel Bedform: Kaj River Case Study

  • Mohammad Reza MaddahiEmail author
  • Hossein Afzalimehr
  • Paweł M. Rowinski
Open Access
Article

Abstract

The present study deals with the turbulence structure in order to better understand the interaction of bedform and flow characteristics in a gravel-bed river. Data measured above a bedform is used to analyze the importance of coherent structures in turbulent transfer. The Reynolds stress and turbulence intensity in stream-wise direction illustrate significant difference along the bedform, showing a three-layer distribution at the crest and a convex one at the downstream of bedform. Quadrant analysis technique is used to picture momentum exchange above the considered bedform and to find the dominant event in bursting process of the gravel bedform. Quadrant analysis demonstrates that the mechanisms of bedforms generation in sand and gravel-bed rivers are similar and sweep is the dominant event in both rivers.

Key words

turbulence bedform gravel-bed river quadrant analysis Reynolds stress 

References

  1. Afzalimehr, H. (2010), Effect of flow non-uniformity on velocity and turbulence intensities in flow over a cobble-bed, J. Hydrol. Proc. 24, 3, 331–341, DOI: 10.1002/hyp.7495.Google Scholar
  2. Afzalimehr, H., and F. Anctil (2000), Accelerating shear velocity in gravel bed channels, J. Hydrol. Sci. 45, 1, 113–124, DOI: 10.1080/02626660009492309.CrossRefGoogle Scholar
  3. Afzalimehr, H., and C.D. Rennie (2009), Determination of bed shear stress using boundary layer parameters in a gravel-bed river, J. Hydrol. Sci. 54, 1, 147–159, DOI: 10.1623/hysj.54.1.147.CrossRefGoogle Scholar
  4. Bennett, S.J., and J.L. Best (1995), Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and bed form stability, Sedimentology 42, 3, 491–513, DOI: 10.1111/j.1365-3091.1995.tb00386.x.CrossRefGoogle Scholar
  5. Bialik, R., M. Karpinski, A. Rajwa, B. Luks, and P.M. Rowiński (2014), Bedform characteristics in natural and regulated channels: a comparative field study on the Wilga River, Poland, Acta Geophys. 62, 6, 1413–1434, DOI:10.2478/s11600-014-0239-0.CrossRefGoogle Scholar
  6. Carling, P.A., and A.B. Shvidchenko (2002), A consideration of the dune:antidune transition in fine gravel, Sedimentology 49, 6, 1269–1282, DOI: 10.1046/j.1365-3091.2002.00496.x.CrossRefGoogle Scholar
  7. Cellino, M., and U. Lemmin (2004), Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow, J. Hydraul. Eng. ASCE 130, 11, 1077–1088, DOI: 10.1061/(ASCE)0733-9429 (2004)130:11(1077).CrossRefGoogle Scholar
  8. Church, M. (2006), Bed material transport and the morphology of alluvial river channels, Ann. Rev. Earth Planet. Sci. 34, 325–354, DOI: 10.1146/annurev.earth.33.092203.122721.CrossRefGoogle Scholar
  9. Church, M. (2015), Channel stability: morphodynamics and the morphology of rivers. In: P.M. Rowiński and A. Radecki-Pawlik (eds.), Rivers-Physical, Fluvial and Environmental Processes, Springer, Switzerland, 281–321, DOI:10.1007/978-3-319-17719-9 2.CrossRefGoogle Scholar
  10. Dey, S. (2014), Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena, Springer, Berlin Heidelberg, DOI: 10.1007/978-3-642-19062-9.CrossRefGoogle Scholar
  11. Dey, S., and R. Raikar (2007), Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng. ASCE 133, 3, 288–304, DOI: 10.1061/(ASCE)0733-9429.CrossRefGoogle Scholar
  12. Fazlollahi, A., H. Afzalimehr, and J. Sui (2015), Effect of slope angle of an artificial pool on distributions of turbulence, Int. J. Sed. Res. 30, 2, 93–99CrossRefGoogle Scholar
  13. Ferraro, D., and S. Dey (2015), Principles of mechanics of bedforms. In: P.M. Rowiński, and A. Radecki-Pawlik (eds.), Rivers-Physical, Fluvial and Environmental Processes, Springer, Switzerland, 79–98, DOI: 10.1007/978-3-319-17719-92.CrossRefGoogle Scholar
  14. Franca, M.J., and M. Brocchini (2015), Turbulence in rivers. In: P.M. Rowiński and A. Radecki-Pawlik (eds.), Rivers-Physical, Fluvial and Environmental Processes, Springer, Switzerland, 51–78, DOI: 10.1007/978-3-19-17719-9 2.CrossRefGoogle Scholar
  15. Goring, D., and V.I. Nikora (2002), Despiking acoustic doppler velocimeter data, J. Hydraul. Eng. ASCE 128, 1, 117–126, DOI: 10.1061/(ASCE)0733-9429(2002)128:1(117).CrossRefGoogle Scholar
  16. Graf, W.H., and M.S. Altinakar (1993), Hydraulique fluviale: écoulement et phénomènes de transport dans les canaux a géométrie simple, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland.Google Scholar
  17. Karahan, M.E., and A.W. Peterson (1980), Visualization of separation over sand waves, J. Hydraul. Div. ASCE 106, 8, 1345–1352.Google Scholar
  18. Lu, S.S., and W.W. Willmarth (1973), Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid. Mech. 60, 3, 481–511, DOI: http://dx.doi.org/10.1017/S0022112073000315.CrossRefGoogle Scholar
  19. MacMahan, J., A. Reniers, W. Ashley, and E. Thornton (2012), Frequency wavenumber velocity spectra, Taylor’s hypothesis and length scales in a natural gravel bed river, Water. Resour. Res. 48, W09548, DOI: 10.1029/2011WR011709.Google Scholar
  20. McLean, S.R., and J.D. Smith (1986), A model for flow over two dimensional bedforms, J. Hydraul. Eng. ASCE 112, 4, 300–317, DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1986)112:4(300).CrossRefGoogle Scholar
  21. Mrokowska, M., P.M. Rowiński, and M.B. Kalinowska (2015), A methodological approach of estimating of resistance to flow under unsteady flow conditions, Hydrol. Earth Syst. Sci. 19, 4041–4053, DOI: 10.5194/hess-19-4041-2015.CrossRefGoogle Scholar
  22. Nasiri, E., H. Afzalimehr, and V.P. Singh (2011), Effect of bed forms and vegetated banks on velocity distributions and turbulent flow structure, J. Hydrol. Eng. ASCE 16, 6, 495–507, DOI: 10.1061/(ASCE)HE.1943-5584.0000337.CrossRefGoogle Scholar
  23. Nasiri, E., H. Afzalimehr, J. Gallichand, and A.N. Rousseau (2013), Turbulence measurements above sharp-crested gravel bedforms, Int. J. Hydraul. Eng. 2, 5, 101-114, DOI: 10.5923/j.ijhe.20130205.04.Google Scholar
  24. Nezu, I., H. Nakagawa, and G. Jirka (1994), Turbulence in open-channel flows. J. Hydraul. Eng. ASCE 120, 10, 1235–1237, DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)120:10(1235).CrossRefGoogle Scholar
  25. Nikora, V.I. (2010), Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics, River. Res. Appl. 26, 4, 367–384, DOI: 10.1002/rra.1291.CrossRefGoogle Scholar
  26. Nikora, V.I., and P.M. Rowiński (2008), Rough-bed flows in geophysical, environmental, and engineering systems: double-averaging approach and its applications, Acta Geophys. 56, 3, 529–533, DOI: 10.2478/s11600-008-0037-7.CrossRefGoogle Scholar
  27. Nikora, V.I., P.M. Rowiński, A. Suchodolov, and D. Krasuski (1994), Structure of river turbulence behind warm-water discharge. J. Hydraul. Eng. ASCE 120, 2, 191–208, DOI: 10.1061/(ASCE)0733-9429(1994)120:2(191).CrossRefGoogle Scholar
  28. Nikora, V.I., A. Sukhodolov, and P.M. Rowiński (1997), Statistical sand waves dynamics in one-directional water flows, J. Fluid. Mech. 351, 17–39, DOI: 10.1017/S0022112097006708.CrossRefGoogle Scholar
  29. Qin, J., T. Wu, and D. Zhong (2015), Spectral behavior of gravel dunes, Geomorphology 231, 331–342, DOI: 10.1016/j.geomorph.2014.12.023.CrossRefGoogle Scholar
  30. Radecki-Pawlik, A., P.A. Carling, E. Slowik-Opoka, L. Ksiazek, and R. Breakspeare (2006), Field investigation of sand-gravel bed forms within the Raba River, Poland. In: R.M.L. Ferreira, E.C.T.L. Alves, J.G.A.B. Leal, and A.H. Cardoso (eds.), Proc. Inter. Conference on Fluvial Hydraulics, 6-8 September 2006, Lisbon, Portugal, 979–984.Google Scholar
  31. Schlichting, H., and K. Geresten (2000), Boundary-Layer Theory, Springer, Berlin Heidelberg, DM 179.CrossRefGoogle Scholar
  32. Shvidchenko, A.B., and G. Pender (2001), Macroturbulent structure of open-channel flow over gravel beds, Water. Resour. Res. 37, 709–719, DOI: 10.1029/2000WR900280.CrossRefGoogle Scholar
  33. Thorne, P.D., J.J. Williams, and A.D. Heathershaw (1989), In situ acoustic measurements of marine gravel threshold and transport, Sedimentology 36, 1, 61–74, DOI: 10.1111/j.1365-3091.1989.tb00820.x.CrossRefGoogle Scholar
  34. van Rijn, L.C. (1993), Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua Publications, Amsterdam.Google Scholar
  35. Venditti, J.G., and O.B. Bauer (2005), Turbulent flow over a dune: Green River, Colorado, Earth Surf. Proc. Land. 30, 3, 289–304, DOI: 10.1002/esp.1142.M.R.CrossRefGoogle Scholar
  36. Wolman, M.G. (1954), A method of sampling coarse river-bed material. J. Am. Geophys. Union 35, 6, 951–956, DOI: 10.1029/TR035i006p00951.CrossRefGoogle Scholar

Copyright information

© Maddahi et al. 2016

Authors and Affiliations

  • Mohammad Reza Maddahi
    • 1
    Email author
  • Hossein Afzalimehr
    • 2
  • Paweł M. Rowinski
    • 3
  1. 1.Department of Water EngineeringKermanIran
  2. 2.Department of Water EngineeringIsfahan University of TechnologyIsfahanIran
  3. 3.Institute of GeophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations