Acta Geophysica

, Volume 64, Issue 5, pp 1593–1604 | Cite as

Application of Multichannel Analysis of Surface Waves to S-Phase Wave Anisotropy Estimation

  • Iwona Stan-KłeczekEmail author
  • Maciej J. Mendecki
Open Access


The Multichannel Analysis of Surface Waves (MASW) is an increasingly used technique for recognition of a shallow geological structure and estimation of geotechnical parameters, e.g., S-wave velocity, layer density, layer thickness, shear modulus, estimated P-wave velocity, and estimated Poisson ratio. MASW surveys were carried out in two limestone quarries in the southern part of Poland. The experimental areas are characterised by a simple geological structure: consolidated Triassic limestone. Measurement profiles were arranged as a shapely six-pointed star. For each survey line, 12 geophones with 2-meter (Deposit 1) and 3-meter (Deposit 2) spacing were applied. The research allowed to compare P- and S-wave velocity changes with the main crack systems in the studied rock masses.

Key words

surface waves Rayleigh waves dispersion curve MASW genetic algorithm S-waves anisotropy 


  1. Anderson, D.L., B. Minster, and D. Cole (1974), The effect of oriented cracks on seismic velocities, J. Geophys. Res. 79, 26, 4011–4015, DOI: 10.1029/JB079i026p04011.CrossRefGoogle Scholar
  2. Barton, N. (2007), Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor & Francis Group. London.Google Scholar
  3. Bukowska, M., and U. Sanetra (2008), The tests of the conventional triaxial granite and dolomite compression in the aspect of their mechanical properties, Miner. Resour. Manage. 24, 2, 345–358.Google Scholar
  4. Bukowska, M., U. Sanetra, and M. Wadas (2007), The post-peak failure properties and deformational structures of rocks under conventional triaxial compression conditions, Archiv. Min. Sci. 52, 3, 297–310.Google Scholar
  5. Çaylak, Ç., and İ. Kaftan (2014), Determination of near-surface structures from multi-channel surface wave data using multi-layer perceptron neural network (MLPNN) algorithm, Acta Geophys. 62, 6, 1310–1327, DOI: 10.2478/s11600-014-0207-8.CrossRefGoogle Scholar
  6. Czarakcziewa, A. (1971), Geological documentation of Triassic limestone deposit “STRZELCE OPOLSKIE” in cat. B, C1, C2, Przedsiębiorstwo Geologiczne, Kraków (in Polish).Google Scholar
  7. Dal Moro, G., M. Pipan, and P. Gabrielli (2007), Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation, J. Appl. Geophys. 61, 1, 39–55, DOI: 10.1016/j.jappgeo.2006.04.002.CrossRefGoogle Scholar
  8. Dobróka, M., and J. Somogyi Molnár (2012), New petrophysical model describing the pressure dependence of seismic velocity, Acta Geophys. 60, 2, 371–383, DOI: 10.2478/s11600-011-0079-0.CrossRefGoogle Scholar
  9. Foti, S., S. Parolai, D. Albarello, and M. Picozzi (2011), Application of surfacewave methods for seismic site characterization, Surv. Geophys. 32, 6, 777–825, DOI: 10.1007/s10712-011-9134-2.CrossRefGoogle Scholar
  10. Jarzyna, J., M. Bała, and A. Cichy (2010), Elastic parameters of rocks from well logging in near surface sediments, Acta Geophys. 58, 1, 34–48, DOI: 10.2478/s11600-009-0036-3.Google Scholar
  11. Lai, C.G., and G.J. Rix (1998), Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization, Georgia Institute of Technology, School of Civil and Environmental Engineering, Report No. GIT-CEE/GEO-98-2, 258 pp.Google Scholar
  12. Louie, J.N. (2001), Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bull. Seismol. Soc. Am. 91, 2, 347–364, DOI: 10.1785/0120000098.CrossRefGoogle Scholar
  13. Nazarian, S., K.H. Stokoe II, and W.R. Hudson (1983), Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems, Transport. Res. Record 930, 38–45.Google Scholar
  14. Park, C.B., R.D. Miller, and J. Xia (1999), Multichannel analysis of surface waves, Geophysics 64, 3, 800–808, DOI: 10.1190/1.1444590.CrossRefGoogle Scholar
  15. Polkowski, M., and M. Grad (2015), Seismic wave velocities in deep sediments in Poland: borehole and refraction data compilation, Acta Geophys. 63, 3, 698–714, DOI: 10.1515/acgeo-2015-0019.CrossRefGoogle Scholar
  16. Ramillien, G. (2001), Genetic algorithms for geophysical parameter inversion from altimeter data, Geophys. J. Int. 147, 2, 393–402, DOI: 10.1046/j.0956-540x.2001.01543.x.CrossRefGoogle Scholar
  17. Stan-Kłeczek, I. (2008), The role of seismic methods in investigation of rock mass, Acta Geophys. 56, 4, 1065–1073, DOI: 10.2478/s11600-008-0052-8.Google Scholar
  18. Stan-Kłeczek, I., and A.F. Idziak (2008), Anisotropy of elastic properties of rock mass induced by cracks, Acta Geodyn.Geomater. 5, 2, 150, 153-159.Google Scholar
  19. Stan-Kłeczek, I., K. Sutkowska, D. Stan, and M. Zolich (2012), The study of the relationship between cracks and seismic parameters of rock, Acta Geodyn. Geomater. 9, 2, 166, 137–142.Google Scholar
  20. Vilhelm, J., V. Rudajev, and R. Živor (2011), Assessment of fracture properties from P-wave velocity distribution. In: A.F. Idziak and R. Dubiel (eds.), Geophysics in Mining and Enviromental Protection, Geoplanet: Earth and Planetary Sciences, Vol. 2, Springer, Berlin Heidelberg, 109–116, DOI: 10.1007/978-3-642-19097-1_11.CrossRefGoogle Scholar
  21. Xia, J., R.D. Miller, and C.B. Park (1999), Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics 64, 3, 691–700, DOI: 10.1190/1.1444578.CrossRefGoogle Scholar
  22. Živor, R., J. Vilhelm, V. Rudajev, and T. Lokajícek (2011), Measurement of P- and S-wave velocities in a rock massif and its use in estimation elastic moduli, Acta Geodyn. Geomat. 8, 2, 157–167.Google Scholar

Copyright information

© Stan-Kłeczek and Mendecki 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland

Personalised recommendations