Acta Geophysica

, Volume 64, Issue 4, pp 1004–1033 | Cite as

Regional Variations of the ω-upper Bound Magnitude of GIII Distribution in the Iranian Plateau

  • Hiwa MohammadiEmail author
  • Yusuf Bayrak
Open Access


The Iranian Plateau does not appear to be a single crustal block, but an assemblage of zones comprising the Alborz—Azerbaijan, Zagros, Kopeh—Dagh, Makran, and Central and East Iran. The Gumbel’s III asymptotic distribution method (GIII) and maximum magnitude expected by Kijko—Sellevoll method is applied in order to check the potentiality of the each seismogenic zone in the Iranian Plateau for the future occurrence of maximum magnitude (Mmax). For this purpose, a homogeneous and complete seismicity database of the instrumental period during 1900–2012 is used in 29 seismogenic zones of the examined region. The spatial mapping of hazard parameters (upper bound magnitude (ω), most probable earthquake magnitude in next 100 years (M100) and maximum magnitude expected by maximum magnitude estimated by Kijko—Sellevoll method (max MK − Smax) reveals that Central and East Iran, Alborz and Azerbaijan, Kopeh—Dagh and SE Zagros are a dangerous place for the next occurrence of a large earthquake.

Key words

Iranian Plateau maximum magnitude Gumbel’s III asymptotic distribution most probable earthquake magnitude in next 100 years (M100), maximum magnitude expected by Kijko–Sellevoll method 


  1. Alavi, M. (1996), Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran, J. Geodyn. 21, 1, 1–33, DOI: 10.1016/0264-3707(95)00009-7.CrossRefGoogle Scholar
  2. Allen, M.B., S.J. Vincent, G.I. Alsop, A. Ismail-Zadeh, and R. Flecker (2003), Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone, Tectonophysics 366, 3–4, 223–239, DOI: 10.1016/S0040-1951(03)00098-2.CrossRefGoogle Scholar
  3. Ambraseys, N.N., and C.P. Melville (1982), A History of Persian Earthquakes, Cambridge University Press, Cambridge.Google Scholar
  4. Båth, M. (1975), Seismicity of the Tanzania region, Tectonophysics 27, 4, 353–379, DOI: 10.1016/0040-1951(75)90004-9.CrossRefGoogle Scholar
  5. Båth, M. (1983), Earthquake frequency and energy in Greece, Tectonophysics 95, 3–4, 233–252, DOI: 10.1016/0040-1951(83)90070-7.CrossRefGoogle Scholar
  6. Bayrak, Y., S. Öztürk, H. Çinar, G.Ch. Koravos, and T.M. Tsapanos (2008), Regional variation of the ω-upper bound magnitude of GIII distribution in and around Turkey: tectonic implications for earthquake hazards, Pure Appl. Geophys. 165, 7, 1367–1390, DOI: 10.1007/s00024-008-0359-z.CrossRefGoogle Scholar
  7. Berberian, M. (1976), Contribution to the seismotectonics of Iran. Part II, Geological Survey of Iran, Report No. 39.Google Scholar
  8. Berberian, M. (1977), Contribution to the seismotectonics of Iran. Part III, Geological Survey of Iran, Report No. 40.Google Scholar
  9. Berberian, M. (1983), The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust, Can. J. Earth Sci. 20, 2, 163–183, DOI: 10.1139/e83-015.CrossRefGoogle Scholar
  10. Berberian, M. (1994), Natural hazards and the first earthquake catalogue of Iran. Vol. 1. Historical hazard in Iran prior to 1900, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran, 620 pp.Google Scholar
  11. Berberian, M. (1995), Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics 241, 3–4, 193–224, DOI: 10.1016/0040-1951(94)00185-C.CrossRefGoogle Scholar
  12. Berberian, M. (1997), Seismic sources of the Transcaucasian historical earthquakes. In: D. Giardini and S. Balassanian (eds.), Historical and Prehistorical Earthquakes in the Caucasus, 233–311, Kluwer Academic Publishers.CrossRefGoogle Scholar
  13. Berberian, M. (2014), Earthquakes and Coseismic Surface Faulting on the Iranian Plateau. A Historical, Social and Physical Approach, Elsevier Publishing, Amsterdam, 776 pp.Google Scholar
  14. Berberian, M., and R.S. Yeats (1999), Patterns of historical earthquake rupture in the Iranian Plateau, Bull. Seismol. Soc. Am. 89, 1, 120–139.Google Scholar
  15. Berberian, M., and R.S. Yeats (2001), Contribution of archaeological data to studies of earthquake history in the Iranian Plateau, J. Struct. Geol. 23, 2–3, 563–584, DOI: 10.1016/S0191-8141(00)00115-2.CrossRefGoogle Scholar
  16. Berberian, M., J.A. Jackson, M. Qorashi, M. Talebian, M. Khatib, and K. Priestley (2000), The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone, Geophys. J. Int. 142, 2, 283–299, DOI: 10.1046/j.1365-246x. 2000.00158.x.CrossRefGoogle Scholar
  17. Burton, P.W. (1977), The application of extreme value statistics to seismic hazard assessments in the European area. In: Proc. Symp. Analysis and on Seismic Risk, 17–22 October 1977, Liblice.Google Scholar
  18. Burton, P.W. (1979), Seismic risk in southern Europe through to India examined using Gumbel’s third distribution of extreme values, Geophys. J. Int. 59, 2, 249–280, DOI: 10.1111/j.1365-246X.1979.tb06766.x.CrossRefGoogle Scholar
  19. Byrne, D.E., L.R. Sykes, and D.M. Davis (1992), Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone, J. Geophys. Res. 97, B1, 449–478, DOI: 10.1029/91JB02165.CrossRefGoogle Scholar
  20. Dargahi-Noubary, G.R. (2002), The use of modern statistical theories in the assessment of earthquake hazard, with application to quiet regions of eastern North America, Soil Dyn. Earthq. Eng. 22, 5, 361–369, DOI: 10.1016/S0267-7261(02)00027-1.CrossRefGoogle Scholar
  21. Engdahl, E.R., J.A. Jackson, S.C. Myers, E.A. Bergman, and K. Priestley (2006), Relocation and assessment of seismicity in the Iran region, Geophys. J. Int. 167, 2, 761–778, DOI: 10.1111/j.1365-246X.2006.03127.x.CrossRefGoogle Scholar
  22. Epstein, B., and C. Lomnitz (1966), A model for the occurrence of large earthquakes, Nature 211, 5052, 954–956, DOI: 10.1038/211954b0.CrossRefGoogle Scholar
  23. Field, E.H., D.D. Jackson, and J.F. Dolan (1999), A mutually consistent seismichazard source model for southern California, Bull. Seismol. Soc. Am. 89, 3, 559–578.Google Scholar
  24. Gringorten, I.I. (1963), A plotting rule for extreme probabilistic paper, J. Geophys. Res. 68, 3, 813–814, DOI: 10.1029/JZ068i003p00813.CrossRefGoogle Scholar
  25. Gumbel, E.J. (1958), Statistics of Extremes, Columbia University Press, New York, 375 pp.Google Scholar
  26. Hollingsworth, J., J. Jackson, R. Walker, M.R. Gheitanchi, and M.J. Bolourchi (2006), Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran, Geophys. J. Int. 166, 3, 1161–1177, DOI: 10.1111/j.1365-246X.2006.02983.x.CrossRefGoogle Scholar
  27. Hollingsworth, J., J. Jackson, J.E. Alarcon, J.J. Boomer, and M.J. Bolourchi (2007), The 4th February 1997 Bojnourd (Garmkhan) earthquake in NE Iran: Field, teleseismic, and strong-motion evidence for rupture directivity effects on a strike-slip fault, J. Earthq. Eng. 11, 2, 193–214, DOI: 10.1080/13632460601031078.CrossRefGoogle Scholar
  28. Jackson, J., and D. McKenzie (1984), Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan, Geophys. J. Int. 77, 1, 185–264, DOI: 10.1111/j.1365-246X.1984.tb01931.x.CrossRefGoogle Scholar
  29. Jackson, J., K. Priestley, M. Allen, and M. Berberian (2002), Active tectonics of the South Caspian Basin, Geophys. J. Int. 148, 2, 214–245, DOI: 10.1046/j.1365-246X.2002.01588.x.Google Scholar
  30. Kagan, Y.Y. (2002), Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int. 148, 3, 520–541, DOI: 10.1046/j.1365-246x.2002.01594.x.CrossRefGoogle Scholar
  31. Kaila, K.L., and H. Narain (1971), A new approach for preparation of quantitative seismicity maps as applied to Alpide Belt—Sunda Arc and adjoining areas, Bull. Seismol. Soc. Am. 61, 5, 1275–1291.Google Scholar
  32. Karimiparidari, S., M. Zaré, and H. Memarian (2011), New seismotectonic zoning map of Iran. In: Proc. 6th Int. Conf. on Seismology and Earthquake Engineering (SEE6), CD-ROM, 8 pp.Google Scholar
  33. Karimiparidari, S., M. Zaré, H. Memarian, and A. Kijko (2013), Iranian earthquakes, a uniform catalog with moment magnitudes, J. Seismol. 17, 3, 897–911, DOI: 10.1007/s10950-013-9360-9.CrossRefGoogle Scholar
  34. Kijko, A. (1988), Maximum likelihood estimation of Gutenberg–Richter b parameter for uncertain magnitudes values, Pure Appl. Geophys. 127, 4, 573–579, DOI: 10.1007/BF00881745.CrossRefGoogle Scholar
  35. Kijko, A. (2004), Estimation of the maximum earthquake magnitude, mmax, Pure Appl. Geophys. 161, 8, 1655–1681, DOI: 10.1007/s00024-004-2531-4.CrossRefGoogle Scholar
  36. Kijko, A., and M.M. Dessokey (1987), Application of extreme magnitude distributions to incomplete earthquake files, Bull. Seismol. Soc. Am. 77, 4, 1429–1436.Google Scholar
  37. Kijko, A., and M.A. Sellevoll (1989), Estimation of earthquake hazard parameters from incomplete data files. Part I: Utilization of extreme and complete catalogs with different threshold magnitudes, Bull. Seismol. Soc. Am. 79, 3, 645–654.Google Scholar
  38. Kijko, A., and M.A. Sellevoll (1992), Estimation of earthquake hazard parameters from incomplete data files. Part II: Incorporation of magnitude heterogeneity, Bull. Seismol. Soc. Am. 82, 1, 120–134.Google Scholar
  39. Kijko, A., and M. Singh (2011), Statistical tools for maximum possible earthquake magnitude estimation, Acta Geophys. 59, 4, 674–700, DOI: 10.2478/s11600-011-0012-6.CrossRefGoogle Scholar
  40. Knopoff, L., and Y. Kagan (1977), Analysis of the theory of extremes as applied to earthquake problems, J. Geophys. Res. 82, 36, 5647–5657, DOI: 10.1029/JB082i036p05647.CrossRefGoogle Scholar
  41. Koravos, G.Ch., I.G. Main, T.M. Tsapanos, and R.M.W. Musson (2003), Maximum earthquake magnitudes in the Aegean area constrained by tectonic moment release rates, Geophys. J. Int. 152, 1, 94–112, DOI: 10.1046/j.1365-246X. 2003.01825.x.CrossRefGoogle Scholar
  42. Krinitzsky, E.L. (2002), How to obtain earthquake ground motions for engineering design, Eng. Geol. 65, 1, 1–16, DOI: 10.1016/S0013-7952(01)00098-9.CrossRefGoogle Scholar
  43. Makropoulos, K.C. (1978), Statistics of large earthquake magnitude and an evaluation of Greek seismicity, Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 193 pp.Google Scholar
  44. Makropoulos, K.C., and P.W. Burton (1983), Seismic risk of circum-Pacific earthquakes: I. Strain energy release, Pure Appl. Geophys. 121, 2, 247–267, DOI: 10.1007/BF02590137.CrossRefGoogle Scholar
  45. Makropoulos, K.C., and P.W. Burton (1986), Hazan: a FORTRAN program to evaluate seismic-hazard parameters using Gumbel’s theory of extreme value statistics, Comput. Geosci. 12, 1, 29–46, DOI: 10.1016/0098-3004 (86)90017-8.CrossRefGoogle Scholar
  46. Meyer, B., and K. Le Dortz (2007), Strike-slip kinematics in Central and Eastern Iran: Estimating fault slip-rates averaged over the Holocene, Tectonics 26, 5, TC5009, DOI: 10.1029/2006TC002073.Google Scholar
  47. Mirzaei, N., M. Gao, and Y.T. Chen (1997), Seismicity in major seismotectonic provinces of Iran, Earthq. Res. China 11, 4, 351–361.Google Scholar
  48. Mirzaei, N., M. Gao, and Y.T. Chen (1998), Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces, J. Earthq. Predic. Res. 7, 465–495.Google Scholar
  49. Mirzaei, N., M. Gao, and Y.-T. Chen (1999), Delineation of potential seismic sources for seismic zoning of Iran, J. Seismol. 3, 1, 17–30, DOI: 10.1023/A:1009737719013.CrossRefGoogle Scholar
  50. Mueller, C.S. (2010), The influence of maximum magnitude on seismic-hazard estimates in the central and eastern United States, Bull. Seismol. Soc. Am. 100, 2, 699–711, DOI: 10.1785/0120090114.CrossRefGoogle Scholar
  51. Nogol-Sadat, M.A.A. (1994), Seismotectonic map of Iran. Teritise on the geology of Iran. 1:1 000 000 scale, Tehran, Iran.Google Scholar
  52. Nordquist, J.M. (1945), Theory of largest values applied to earthquake magnitudes, Trans. Am. Geophys. Union 26, 1, 29–31, DOI: 10.1029/TR026i001p00029.CrossRefGoogle Scholar
  53. Nowroozi, A.A. (1976), Seismotectonic provinces of Iran, Bull. Seismol. Soc. Am. 66, 4, 1249–1276.Google Scholar
  54. Nowroozi, A.A., and G. Ahmadi (1986), Analysis of earthquake risk in Iran based on seismotectonic provinces, Tectonophysics 122, 1–-2, 89–114, DOI: 10.1016/0040-1951(86)90160-5.CrossRefGoogle Scholar
  55. Pisarenko, V.F., A.A. Lyubushin, V.B. Lysenko, and T.V. Golubeva (1996), Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters, Bull. Seismol. Soc. Am. 86, 3, 691–700.Google Scholar
  56. Reiter, L. (1990), Earthquake Hazard Analysis: Issues and Insights, Columbia University Press, New York, 254 pp.Google Scholar
  57. Shabanian, E., L. Siame, O. Bellier, L. Benedetti, and M.R. Abbassi (2009), Quaternary slip rates along the northeastern boundary of the Arabia-Eurasia collision zone (Kopeh Dagh Mountains, Northeast Iran), Geophys. J. Int. 178, 2, 1055–1077, DOI: 10.1111/j.1365-246X.2009.04183.x.CrossRefGoogle Scholar
  58. Snyder, D.B., and M. Barazangi (1986), Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations, Tectonics 5, 3, 361–373, DOI: 10.1029/TC005i003p00361.CrossRefGoogle Scholar
  59. Sornette, D., L. Knopoff, Y.Y. Kagan, and C. Vanneste (1996), Rank-ordering statistics of extreme events: application to the distribution of large earthquakes, J. Geophys. Res. 101, B6, 13883–13893, DOI: 10.1029/96JB00177.CrossRefGoogle Scholar
  60. Stocklin, J. (1968), Structural history and tectonics of Iran, AAPG Bull. 52, 7, 1229–1258.Google Scholar
  61. Takin, M. (1972), Iranian geology and continental drift in the Middle East, Nature 235, 5334, 147–150, DOI: 10.1038/235147a0.CrossRefGoogle Scholar
  62. Talebian, M., and J. Jackson (2004), A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran, Geophys. J. Int. 156, 3, 506–526, DOI: 10.1111/j.1365-246X.2004.02092.x.CrossRefGoogle Scholar
  63. Tavakoli, B. (1996), Major seismotectonic provinces of Iran, Technical Report, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran (in Persian).Google Scholar
  64. Tavakoli, B., and M. Ghafory-Ashtiany (1999), Seismic hazard assessment of Iran, Ann. Geophys. 42, 6, 1013–1021, DOI: 10.4401/ag-3781.Google Scholar
  65. Tinti, S., and F. Mulargia (1985), Effects of magnitude uncertainties on estimating the parameters in the Gutenberg–Richter frequency-magnitude law, Bull. Seismol. Soc. Am. 75, 6, 1681–1697.Google Scholar
  66. Tsapanos, T.M. (1990), b-values of two tectonic parts in the circum-Pacific belt, Pure Appl. Geophys. 134, 2, 229–242, DOI: 10.1007/BF00876999.CrossRefGoogle Scholar
  67. Tsapanos, T.M. (1997), Regional variation of the ω values in the circum-Pacific belt, Pure Appl. Geophys. 150, 1, 113–120, DOI: 10.1007/s000240050066.CrossRefGoogle Scholar
  68. Tsapanos, T.M. (2003), Appraisal of seismic hazard parameters for the seismic regions of the east circum-Pacific belt inferred from a Bayesian approach, Nat. Hazards 30, 1, 59–78, DOI: 10.1023/A:1025051712052.CrossRefGoogle Scholar
  69. Tsapanos, T.M., and P.W. Burton (1991), Seismic hazard evaluation for specific seismic regions of the world, Tectonophysics 194, 1–2, 153–169, DOI: 10.1016/0040-1951(91)90278-Z.CrossRefGoogle Scholar
  70. Tsapanos, T.M., and C.V. Christova (2003), Earthquake hazard parameters in Crete island and its surrounding area inferred from Bayes statistics: an integration of morphology of the seismically active structures and seismological data, Pure Appl. Geophys. 160, 8, 1517–1536, DOI: 10.1007/s00024-003-2358-4.CrossRefGoogle Scholar
  71. Tsapanos, T.M., O.Ch. Galanis, G.Ch. Koravos, and R.M.W. Musson (2002), A method for Bayesian estimation of the probability of the local intensity for some cities of Japan, Ann. Geophys. 45, 5, 657–671, DOI: 10.4401/ag-3528.Google Scholar
  72. Tsapanos, T.M., Y. Bayrak, H. Cinar, G.Ch. Koravos, E. Bayrak, E.E. Kalogirou, A.V. Tsapanou, and G.E. Vougiouka (2014), Analysis of largest earthquakes in Turkey and its vicinity by application of the Gumbel III distribution, Acta Geophys. 62, 1, 59–82, DOI: 10.2478/s11600-013-0155-8.CrossRefGoogle Scholar
  73. Uhrhammer, R.A. (1986), Characteristics of northern and central California seismicity, Earthq. Notes 57, 1, 21 (abstract).Google Scholar
  74. Vernant, P., F. Nilforoushan, J. Chéry, R. Bayer, Y. Djamour, F. Masson, H. Nankali, J.F. Ritz, M. Sedighi, and F. Tavakoli (2004), Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth Planet. Sci. Lett. 223, 1–2, 177–185, DOI: 10.1016/j.epsl.2004.04.017.CrossRefGoogle Scholar
  75. Walker, R., and J. Jackson (2004), Active tectonics and late Cenozoic strain distribution in central and eastern Iran, Tectonics 23, 5, TC5010, DOI: 10.1029/2003TC001529.Google Scholar
  76. Walker, R., J. Jackson, and C. Baker (2004), Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran, Geophys. J. Int. 157, 1, 265–282, DOI: 10.1111/j.1365-2966.2004.02179.x.CrossRefGoogle Scholar
  77. Wheeler, R.L. (2009), Methods of Mmax estimation east of the Rocky Mountains, Open-File Report 2009-1018, U.S. Geological Survey, 44 pp.Google Scholar
  78. Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am. 90, 4, 859-869, DOI: 10.1785/0119990114.Google Scholar
  79. Yadav, R.B.S., D. Shanker, S. Chopra, and A.P. Singh (2010a), An application of regional time and magnitude predictable model for long-term earthquake prediction in the vicinity of October 8, 2005 Kashmir Himalaya earthquake , Nat. Hazards 54, 3, 985–1014, DOI: 10.1007/s11069-010-9519-4.CrossRefGoogle Scholar
  80. Yadav, R.B.S., J.N. Tripathi, B.K. Rastogi, M.C. Das, and S. Chopra (2010b), Probabilistic assessment of earthquake recurrence in northeast India and adjoining regions, Pure Appl. Geophys. 167, 11, 1331–1342, DOI: 10.1007/s00024-010-0105-1.CrossRefGoogle Scholar
  81. Yadav, R.B.S., Y. Bayrak, J.N. Tripathi, S. Chopra, A.P. Singh, and E. Bayrak (2012a), A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions, Pure Appl. Geophys. 169, 9, 1619–1639, DOI: 10.1007/s00024-011-0434-8.CrossRefGoogle Scholar
  82. Yadav, R.B.S., Y. Bayrak, J.N. Tripathi, S. Chopra, and E. Bayrak (2012b), Regional variation of the ω-upper bound magnitude of GIII distribution in Hindukush—Pamir Himalaya and the adjacent regions: a perspective on earthquake hazard, Tectonophysics 544–545, 1–12, DOI: 10.1016/j.tecto.2012.03.015.CrossRefGoogle Scholar
  83. Yadav, R.B.S., T.M. Tsapanos, G.Ch. Koravos, Y. Bayrak, and K.D. Devlioti (2013), Spatial mapping of earthquake hazard parameters in the Hindukush—Pamir Himalaya and adjacent regions: implication for future seismic hazard, J. Asian Earth Sci. 70–71, 115–124, DOI: 10.1016/j.jseaes.2013.03.007.CrossRefGoogle Scholar
  84. Yazdani, A., and M. Kowsari (2013), Bayesian estimation of seismic hazards in Iran, Sci. Iran. 20, 3, 422–430, DOI: 10.1016/j.scient.2012.12.032.Google Scholar
  85. Ye, H., G. Chen, and Q. Zhou (1995), Study on the intraplate potential seismic sources. In: Proc. Fifth Int. Conf. Seismic Zonation, Nice, France, Vol. 2, 1424–1430.Google Scholar
  86. Yegulalp, T.M., and J.T. Kuo (1974), Statistical prediction of the occurrence of maximum magnitude earthquakes. Bull. Seismol. Soc. Am. 64, 2, 393–414.Google Scholar
  87. Zare, M. (2010), Fundamental of seismic hazard analyses, Technical Report, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran, 142 pp. (in Persian).Google Scholar

Copyright information

© Mohammadi and Bayrak 2016

Authors and Affiliations

  1. 1.Department of Earth Sciences, College of SciencesShiraz UniversityShirazIran
  2. 2.Agri Ibrahim Çeçen UniversityAgriTurkey

Personalised recommendations