Pareto Joint Inversion of 2D Magnetotelluric and Gravity Data — Towards Practical Applications

Abstract

In this paper, a Pareto inversion based global optimization approach, to obtain results of joint inversion of two types of geophysical data sets, is formulated. 2D magnetotelluric and gravity data were used for tests, but presented solution is flexible enough to be used for combination of any kind of two or more target functions, as long as misfits can be calculated and forward problems solved. To minimize dimensionality of the solution, space and introduce straightforward regularization Sharp Boundary Interface (SBI) method was applied. As a main optimization engine, Particle Swarm Optimization (PSO) was used. Synthetic examples based on a real geological model were used to test proposed approach and show its usefulness in practical applications.

References

  1. Abdelzaher, M., J. Nishijima, G. El-Quady, E. Aboud, O. Masoud, M. Soliman, and S. Ehara (2011), Gravity and magnetotelluric investigations to elicit the origin of Hammam Faraun hot spring, Sinai Peninsula, Egypt, Acta Geophys. 59, 3, 633–656, DOI: 10.2478/s11600-011-0006-4.

    Article  Google Scholar 

  2. Blakely, R. (1996), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.

    Google Scholar 

  3. Chen, J., G.M. Hoversten, K. Key, G. Nordquist, and W. Cumming (2012), Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site, Geophysics 77, 4, E265–E279, DOI: 10.1190/geo2011-0430.1.

    Article  Google Scholar 

  4. Danek, T., M. Kochetov, and M. Slawinski (2013), Uncertainty analysis of effective elasticity tensors using quaternion-based global optimization and Monte-Carlo method, Quart. J. Mech. Appl. Math. 66, 2, 253–272, DOI: 10.1093/qjmam/hbt004.

    Article  Google Scholar 

  5. DeStefano, M. and D. Colombo (2006), Geophysical modeling through simultaneous joint inversion of seismic, gravity and magnetotelluric data. In: SEG International Exhibition and 76th Annual Meeting, Workshop on Integration of Seismic and Electromagnetic Measurements.

    Google Scholar 

  6. Fernandez Martinez, J., E. Gonzalo, J. Alvarez, H. Kuzma, and C. Menendez Perez (2010), PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case, J. Appl. Geophys. 71, 1, 13–25, DOI: 10.1016/j.jappgeo.2010.02.001.

    Article  Google Scholar 

  7. Gauss, C. (1809), Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, Kunst und Industrie Comptoir.

    Google Scholar 

  8. Jegen, M.D., R.W. Hobbs, P. Tarits, and A. Chave (2009), Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf, Earth Planet. Sci. Lett. 282, 1–4, 47–55, DOI: 10.1016/j.epsl.2009.02.018.

    Article  Google Scholar 

  9. Kennedy, J., and R. Eberhart (1995), Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Vol. 4, 1942–1948.

    Article  Google Scholar 

  10. Kozlovskaya, E., L. Vecsey, J. Plomerova, and T. Raita (2007), Joint inversion of multiple data types with the use of multiobjective optimization: problem formulation and application to the seismic anisotropy investigations, Geophys. J. Int. 171, 2, 761–779, DOI: 10.1111/j.1365-246X.2007.03540.x.

    Article  Google Scholar 

  11. Kung, H., F. Luccio, and F. Preparata (1975), On finding the maxima of a set of vectors, J. ACM 22, 4, 469–476.

    Article  Google Scholar 

  12. Legendre, A. (1805), Nouvelles Methodes pour la Determination des Orbites des Cometes, Didot Libr., Paris, 80 pp.

    Google Scholar 

  13. Liberti, L., and N. Maculan (eds.) (2006), Global Optimization: From Theory to Implementation, Springer Science and Business Media, New York.

    Book  Google Scholar 

  14. Lines, L., A. Schultz, and S. Treitel (1988), Cooperative inversion of geophysical data, Geophysics 53, 1, 8–20, DOI: 10.1190/1.1442403.

    Article  Google Scholar 

  15. Mehanee, S., and M. Zhdanov (2002), Two-dimensional magnetotelluric inversion of blocky geoelectrical structures, J. Geophys. Res. 107, B4, 2156–2202, DOI: 10.1029/2001JB000191.

    Article  Google Scholar 

  16. Poli, R., J. Kennedy, and T. Blackwell (2007), Particle swarm optimization. An overview, Swarm Intell. 1, 1, 33–57, DOI: 10.1007/s11721-007-0002-0.

    Article  Google Scholar 

  17. Sen, M., and P. Stoffa (1995), Global Optimization Methods in Geophysical Inversion, Elsevier, Amsterdam.

    Google Scholar 

  18. Smith, T., M. Hoversten, E. Gasperikova, and F. Morrison (1999), Sharp boundary inversion of 2D magnetotelluric data, Geophys. Prospect. 47, 4, 469–486, DOI: 10.1046/j.1365-2478.1999.00145.x.

    Article  Google Scholar 

  19. Tikhonov, A. (1963), Regularization of incorrectly posed problems, Dokl. Akad. Nauk SSSR 4, 1624–1627.

    Google Scholar 

  20. Vozoff, K., and D. Jupp (1975), Joint inversion of geophysical data, Geophys. J. Int. 42, 3, 977–991, DOI: 10.1111/j.1365-246X.1975.tb06462.x.

    Article  Google Scholar 

  21. Wannamaker, P., J. Stodt, and L. Rijo (1987), A stable finite element solution for twodimensional magnetotelluric modelling, Geophys. J. Int. 88, 1, 277–296, DOI: 10.1111/j.1365-246X.1987.tb01380.x.

    Article  Google Scholar 

  22. Zhdanov, M. (2002), Geophysical Inverse Theory and Regularization Problems, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomasz Danek.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miernik, K., Bogacz, A., Kozubal, A. et al. Pareto Joint Inversion of 2D Magnetotelluric and Gravity Data — Towards Practical Applications. Acta Geophys. 64, 1655–1672 (2016). https://doi.org/10.1515/acgeo-2016-0035

Download citation

Key words

  • Pareto joint inversion
  • Global Optimization
  • computer software
  • magnetotellurics
  • gravimetry