Acta Geophysica

, Volume 64, Issue 2, pp 541–566 | Cite as

Mid-Latitude Single Station F region Storm Morphology and Forecast

  • Ljiljana R. Cander
Open Access
Acta Geophysica


This paper describes certain aspects of the F region storm morphology based on vertical incidence measurements at single ionosonde station Chilton (51°.60′N, 358°.70′E). The topics discussed include requirements for better understanding of the ionospheric F region morphology and its forecasting under geomagnetically quiet and disturbed conditions. A few common storms during the years of low (1996 and 1997) and high (2000 and 2001) solar activity are considered as well as the Short-Term Ionospheric Forecasting (STIF) method by using two representative examples. The merits are stressed of near-real-time use of data to provide more accurate specification of the geomagnetically disturbed ionosphere and forecast its structure few hours in advance.

Key words

ionosphere (mid-latitude F region ionospheric modelling and forecasting) geomagnetic storms space weather 


  1. Afraimovich, E.L., E.A. Kosogorov, O.S. Lesyuta, I.I. Ushakov, and A.F. Yakovets (2001), Geomagnetic control of the spectrum of travelling ionospheric disturbances based on data from a global GPS network, Ann. Geophys. 19, 7, 723–731, DOI: 10.5194/angeo-19-723-2001.CrossRefGoogle Scholar
  2. Basu, S., S. Basu, K.M. Groves, H.-C. Yeh, S.-Y. Su, F.J. Rich, P.J. Sultan, and M.J. Keskinen (2001), Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000, Geophys. Res. Lett. 28, 18, 3577–3580, DOI: 10.1029/2001GL013259.CrossRefGoogle Scholar
  3. Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Sci. 36, 2, 261–275, DOI: 10.1029/2000RS002432.CrossRefGoogle Scholar
  4. Bilitza, D. (2002), Ionospheric models for radio propagation studies. In: W.R. Stone (ed.), The Review of Radio Science 1999–2002: Advances in 3G Mobile Communications, Cryptography and Computer Security, EMC for Integrated Circuits, Remote Sensing, Radio Astronomy and More, IEEE Press, Piscataway, 625–680.Google Scholar
  5. Bilitza, D., L.A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The international reference ionosphere today and in the future, J. Geod. 85, 12, 909–920, DOI: 10.1007/s00190-010-0427-x.CrossRefGoogle Scholar
  6. Bradley, P.A. (1995), PRIME (Prediction Regional Ionospheric Modelling over Europe), COST Action, Vol. 238, Final Report, Commission of the European Communities, Brussels.Google Scholar
  7. Buonsanto, M.J. (1999), Ionospheric storms–A review, Space Sci. Rev. 88, 3, 563–601, DOI: 10.1023/A:1005107532631.CrossRefGoogle Scholar
  8. Cander, Lj.R. (2003), Toward forecasting and mapping ionospheric space weather under the COST actions, Adv. Space Res. 31, 4, 957–964, DOI: 10.1016/ S0273-1177(02)00793-7.CrossRefGoogle Scholar
  9. Cander, Lj.R. (2006), Why bother with ionospheric prediction and forecasting? In: Manual. European Digital Upper Atmosphere Server, DIAS, 40–42.Google Scholar
  10. Cander, Lj.R. (2008), Ionospheric research and space weather services, J. Atmos. Sol.-Terr. Phys. 70, 15, 1870–1878, DOI: 10.1016/j.jastp.2008.05.010.CrossRefGoogle Scholar
  11. Cander, Lj.R. (2015), Forecasting foF2 and MUF(3000)F2 ionospheric characteristics–A challenging space weather frontier, Adv. Space Res. 56, 9, 1973–1981, DOI: 10.1016/j.asr.2015.06.013.CrossRefGoogle Scholar
  12. Cander, Lj.R., and S.J. Mihajlovic (2005), Ionospheric spatial and temporal variations during the 29-31 October 2003 storm, J. Atmos. Sol.-Terr. Phys. 67, 12, 1118–1128, DOI: 10.1016/j.jastp.2005.02.020.CrossRefGoogle Scholar
  13. Cander, Lj.R., R. Bamford, and J.G. Hickford (2003), Nowcasting and forecasting the foF2, MUF(3000)F2 and TEC based on empirical models and real-time data. In: Proc. 12th Int. Conf. on Antennas and Propagation, 31 March–3 April 2003, Conf. Publ. No. 491, Vol. 1, 139–142, DOI: 10.1049/ cp:20030035.Google Scholar
  14. Coffey, H.E., and E.H. Erwin (2001), When do the geomagnetic aa and Ap indices disagree? J. Atmos. Sol.-Terr. Phys. 63, 5, 551–556, DOI: 10.1016/S1364-6826(00)00171-1.CrossRefGoogle Scholar
  15. Dick, M.I., M.F. Levy, Lj.R. Cander, I. Kutiev, and P. Muhtarov (1999), Short-term ionospheric forecasting over Europe. In: IEE Nat. Conf. on Antennas and Progation, 31 March–1 April 1999, York, UK, 105–107, DOI: 10.1049/ cp:19990025.Google Scholar
  16. Dominici, P., B. Zolesi, and Lj.R. Cander (1988), Preliminary results concerning atmospheric gravity waves deduced from foF2 large-scale oscillations, Phys. Scripta 37, 3, 516–522, DOI: 10.1088/0031-8949/37/3/041.CrossRefGoogle Scholar
  17. Eastwood, J.P. (2008), The science of space weather, Philos. Trans. Roy. Soc. A 366, 1884, 4489–4500, DOI: 10.1098/rsta.2008.0161.CrossRefGoogle Scholar
  18. Fox, M.W., and L.F. McNamara (1988), Improved world-wide maps of monthly median foF2, J. Atmos. Terr. Phys. 50, 12, 1077–1086, DOI: 10.1016/0021-9169(88)90096-7.CrossRefGoogle Scholar
  19. Fuller-Rowell, T.J., M.V. Codrescu, R.G. Roble, and A.D. Richmond (1997), How does the thermosphere and ionosphere react to a geomagnetic storm? In: B.T. Tsurutani, W.D. Gonzales, Y. Kamide, and J.K. Arballo (eds.), Magnetic Storms, Geophysical Monograph, Vol. 98, AGU, Washington, 203–225, DOI: 10.1029/GM098p0203.CrossRefGoogle Scholar
  20. Fuller-Rowell, T.J., M.C. Codrescu, and P. Wilkinson (2000a), Quantitative modeling of the ionospheric response to geomagnetic activity, Ann. Geophys. 18, 7, 766–781, DOI: 10.1007/s00585-000-0766-7.CrossRefGoogle Scholar
  21. Fuller-Rowell, T.J., E. Araujo-Pradere, and M.V. Codrescu (2000b), An empirical ionospheric storm-time correction model, Adv. Space Res. 25, 1, 139–146, DOI: 10.1016/S0273-1177(99)00911-4.CrossRefGoogle Scholar
  22. Fuller-Rowell, T., E. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A.R. Jacobsen (2006), US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci. 41, 6, RS6003, DOI: 10.1029/2005RS003393.CrossRefGoogle Scholar
  23. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO data into a real-time IRI, Radio Sci. 47, 4, RS0L07, DOI: 10.1029/ 2011RS004952.CrossRefGoogle Scholar
  24. Hanbaba, R. (1999), Improved quality of service in ionospheric telecommunication systems planning and operation, COST Action 251 Final Report, Space Research Centre, Warsaw, Poland.Google Scholar
  25. Hapgood, M.A. (2011), Towards a scientific understanding of the risk from extreme space weather, Adv. Space. Res. 47, 12, 2059–2072, DOI: 10.1016/j.asr. 2010.02.007.CrossRefGoogle Scholar
  26. Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys. 14, 9, 917–940, DOI: 10.1007/s00585-996-0917-6.Google Scholar
  27. Huang, X., B.W. Reinisch, and D. Bilitza (2001), IRI in Windows environment, Adv. Space Res. 27, 1, 127–131, DOI: 10.1016/S0273-1177(00)00148-4.CrossRefGoogle Scholar
  28. ITU-R (1997), ITU-R Recommendations, Vol. 1997, P Series–Part 1, International Telecommunication Union, Geneva, Switzerland.Google Scholar
  29. Ivanov-Kholodny, G.S., and A.V. Mikhailov (1986), The Prediction of Ionospheric Conditions, Geophysics and Astrophysics Monographs, D. Reidel Publ. Co., Dordrecht.Google Scholar
  30. Jakowski, N., S. Schlüter, and E. Sardon (1999), Total electron content of the ionosphere during the geomagnetic storm on 10 January 1997, J. Atmos. Sol.-Terr. Phys. 61, 3–4, 299–307, DOI: 10.1016/S1364-6826(98)00130-8.CrossRefGoogle Scholar
  31. Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken (2011), Total electron content models and their use in ionosphere monitoring, Radio Sci. 46, 6, RS0D18, DOI: 10.1029/2010RS004620.CrossRefGoogle Scholar
  32. Kamide, Y. (2000), From discovery to prediction of magnetospheric processes, J. Atmos. Sol.-Terr. Phys. 62, 17–18, 1659–1668, DOI: 10.1016/S1364-6826(00)00118-8.CrossRefGoogle Scholar
  33. Mannucci, A.J., O.P. Verkhoglyadova, B.T. Tsurutani, X. Meng, X. Pi, C. Wang, G. Rosen, E. Lynch, S. Sharma, A. Ridley, W. Manchester, B. Van Der Holst, E. Echer, and R. Hajra (2015), Medium-range thermosphere-ionosphere storm forecasts, Space Weather 13, 3, 125–129, DOI: 10.1002/ 2014SW001125.CrossRefGoogle Scholar
  34. Matsushita, S. (1959), A study of the morphology of ionospheric storms, J. Geo-phys. Res. 64, 3, 305–321, DOI: 10.1029/JZ064i003p00305.CrossRefGoogle Scholar
  35. McNamara, L.F., G.J. Bishop, and J.A. Welsh (2011), Analog ionospheric forecasts: Space weather forecasts by analogy with previous events, Radio Sci. 46, 1, RS1002, DOI: 10.1029/2010RS004399.CrossRefGoogle Scholar
  36. Mendillo, M. (2006), Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys. 44, 4, RG4001, DOI: 10.1029/2005RG000193.CrossRefGoogle Scholar
  37. Mikhailov, A.V., L. Perrone, and N.V. Smirnova (2012), Two types of positive disturbances in the daytime mid-latitude F2-layer: Morphology and formation mechanisms, J. Atmos. Sol.-Terr. Phys. 81–82, 59–75, DOI: 10.1016/j.jastp. 2012.04.003.CrossRefGoogle Scholar
  38. Millward, G.H., H. Rishbeth, T.J. Fuller-Rowell, A.D. Aylward, S. Quegan, and R.J. Moffett (1996), Ionospheric F2 layer seasonal and semiannual variations, J. Geophys. Res. 101, A3, 5149–5156, DOI: 10.1029/95JA03343.CrossRefGoogle Scholar
  39. Mukhtarov, P., B. Andonov, and D. Pancheva (2013), Global empirical model of TEC response to geomagnetic activity, J. Geophys. Res. 118, 10, 6666–6685, DOI: 10.1002/jgra.50576.CrossRefGoogle Scholar
  40. Musman, S., G. Mader, and C. Everett Dutton (1998), Total electron content changes in the ionosphere during the January 10, 1997 disturbance, Geo-phys. Res. Lett. 25, 15, 3055–3058, DOI: 10.1029/98GL51785.CrossRefGoogle Scholar
  41. Namgaladze, A.A., M. Förster, and R.Y. Yurik (2000), Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys. 18, 4, 461–477, DOI: 10.1007/s00585-000-0461-8.CrossRefGoogle Scholar
  42. Pezzopane, M., M. Pietrella, A. Pignatelli, B. Zolesi, and L.R. Cander (2011), Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling, Radio Sci. 46, 5, RS5009, DOI: 10.1029/2011RS004697.CrossRefGoogle Scholar
  43. Pezzopane, M., M. Pietrella, A. Pignatelli, B. Zolesi, and Lj.R. Cander (2013), Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods, Adv. Space Res. 52, 10, 1726–1736, DOI: 10.1016/j.asr. 2012.11.028.CrossRefGoogle Scholar
  44. Pietrella, M. (2012), A short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European area, Ann. Geophys. 30, 2, 343–355, DOI: 10.5194/angeo-30-343-2012.CrossRefGoogle Scholar
  45. Pietrella, M., and L. Perrone (2008), A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and iono-spheric conditions, Ann. Geophys. 26, 2, 323–334, DOI: 10.5194/angeo-26-323-2008.CrossRefGoogle Scholar
  46. Piggott, W.R., and K. Rawer (1972), U.R.S.I. handbook of ionogram interpretation and reduction, Report UAG-23, National Oceanic and Atmospheric Administration, Boulder, Colorado.Google Scholar
  47. Prölss, G.W. (1995), Ionospheric F-region storms. In: H. Volland (ed.), Handbook of Atmospheric Electrodynamics, Vol. 2, CRC Press, Boca Raton, 195–248.Google Scholar
  48. Reilly, M.H., F.J. Rhoads, J.M. Goodman, and M. Singh (1991), Updated clima-tological model predictions of ionospheric and HF propagation parameters, Radio Sci. 26, 4, 1017–1024, DOI: 10.1029/91RS00583.CrossRefGoogle Scholar
  49. Rishbeth, H. (1991), F-region storms and thermospheric dynamics, J. Geomagn. Geoelectr. 43, Suppl. 1, 513–524, DOI: 10.5636/jgg.43.Supplement1_513.CrossRefGoogle Scholar
  50. Rishbeth, H., I.C.F. Müller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett, D.W. Idenden, and A.D. Aylward (2000), Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion, Ann. Geophys. 18, 8, 945–956, DOI: 10.1007/s00585-000-0945-6.CrossRefGoogle Scholar
  51. Smithtro, C.G., and J.J. Sojka (2005), Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions, J. Geophys. Res. 110, A8, A08306, DOI: 10.1029/2004JA010782.Google Scholar
  52. Strangeways, H.J., I. Kutiev, Lj.R. Cander, S. Kouris, V. Gherm, D. Marin, B. De La Morena, S. Eleri Pryse, L. Perrone, M. Pietrella, S. Stankov, L. Tomasik, E. Tulunay, Y. Tulunay, N. Zernov, and B. Zolesi (2009), Near-Earth space plasma modelling and forecasting, Ann. Geophys. 52, 3–4, 255–271, DOI: 10.4401/ag-4579.Google Scholar
  53. Vijaya Lekshmi, D., N. Balan, S. Tulasi Ram, and J.Y. Liu (2011), Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles, J. Geophys. Res. 116, A11, A11328, DOI: 10.1029/ 2011JA017042.CrossRefGoogle Scholar
  54. Wilkinson, P., J. Wu, J. Du, and Y.-J. Wang (2001), Real-time total electron content estimates using the International Reference Ionosphere, Adv. Space Res. 27, 1, 123–126, DOI: 10.1016/S0273-1177(00)00147-2.CrossRefGoogle Scholar
  55. Zolesi, B., and L.R. Cander (2014), Ionospheric Prediction and Forecasting, Springer Geophysics, Springer, Berlin Heildelberg, DOI 10.1007/978-3-642-38430-1.CrossRefGoogle Scholar
  56. Zolesi, B., Lj.R. Cander, and G. De Franceschi (1993), Simplified ionospheric regional model for telecommunication applications, Radio Sci. 28, 4, 603–612, DOI: 10.1029/93RS00276.CrossRefGoogle Scholar

Copyright information

© Cander 2016

Authors and Affiliations

  • Ljiljana R. Cander
    • 1
  1. 1.Rutherford Appleton LaboratoryHarwell OxfordUK

Personalised recommendations