Advertisement

Acta Geophysica

, Volume 64, Issue 2, pp 510–520 | Cite as

Changes in the Large-Scale Atmospheric Circulation over Romania Between 1961 and 2010 on Seasonal Basis

  • Nicu BarbuEmail author
  • Cristina Burada
  • Sabina Stefan
  • Florinela Georgescu
Open Access
Acta Geophysica

Abstract

The aim of this paper is to investigate the trends and shifts of the circulation types over Romania for 50-year period (1961–2010) on seasonal basis. In order to achieve this, two objective catalogues, namely GWT and WLK, from COST733 Action were employed. Daily circulation types were grouped according to the cyclonicity and anticyclonicity and were used to calculate the seasonal occurrence frequency of cyclonic and anticyclonic types. The trend of seasonal time series was investigated by using Mann–Kendall test and the shifts points were determined by using Pettitt test. The results reveal that the occurrence frequency of anti-cyclonic types increases in summer and winter seasons and the occurrence frequency of cyclonic ones decreases for the summer season (for alpha = 0.05).

Key words

circulation types GWT WLK Mann–Kendall test Pettitt test 

References

  1. Barbu, N., F. Georgescu, V. Ştefanescu, and S. Ştefan (2014), Large-scale mechanisms responsible for heat waves occurrence in Romania, Rom. J. Phys. 59, 9–10, 1109–1126.Google Scholar
  2. Bárdossy, A., and H.J. Caspary (1990), Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989, Theor. Appl. Climatol. 42, 3, 155–167, DOI: 10.1007/BF00866871.CrossRefGoogle Scholar
  3. Beck, C., J. Jacobeit, and P.D. Jones (2007), Frequency and within-type variations of large-scale circulation types and their effects on low-frequency climate variability in Central Europe since 1780, Int. J. Climatol. 27, 4, 473–491, DOI: 10.1002/joc.1410.CrossRefGoogle Scholar
  4. Birsan, M.V., and A. Dumitrescu (2014), Snow variability in Romania in connection to large-scale atmospheric circulation, Int. J. Climatol. 34, 1, 134–144, DOI: 10.1002/joc.3671.CrossRefGoogle Scholar
  5. Bissolli, P., and E. Dittmann (2004), Objective weather types. In: Klimastatusbericht 2003, Deutscher Wetterdienst, Offenbach, 101–107 (in German).Google Scholar
  6. Dittmann, E., S. Barth, J.G. Lang, and J.G. Müller-Westermeier (1995), Objective weather type classification, Tech. Report 197, Deutscher Wetterdienst, Offenbach (in German).Google Scholar
  7. Geng, Q., and M. Sugi (2003), Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols–study with a highresolution AGCM, J. Climate 16, 13, 2262–2274, DOI: 10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.CrossRefGoogle Scholar
  8. Georgescu, F., and S. Stefan (2010), Cyclonic activity over Romania in connection with the air circulation types, Rom. Rep. Phys. 62, 4, 878–886.Google Scholar
  9. Hess, P., and H. Brezowski (1952), Catalog of the European Large-Scale Weather Types, Tech. Report 33, Deutscher Wetterdienst, Offenbach, 39 pp.Google Scholar
  10. Hurrell, J.W., and C. Deser (2010), North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Marine Syst. 79, 3–4, 231–244, DOI: 10.1016/j.jmarsys.2009.11.002.CrossRefGoogle Scholar
  11. Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynová, J. Kyselý, and O.E. Tveito (2008), Classifications of atmospheric circulation patterns, Ann. N. Y. Acad. Sci. 1146, 105–152, DOI: 10.1196/annals.1446.019.CrossRefGoogle Scholar
  12. Jacobeit, J., P. Jönsson, L. Bärring, C. Beck, and M. Ekström (2001), Zonal indices for Europe 1780-1995 and running correlations with temperature, Climatic Change 48, 1, 219–241, DOI: 10.1023/A:1005619023045.CrossRefGoogle Scholar
  13. Jacobeit, J., R. Glaser, J. Luterbacher, and H. Wanner (2003), Links between flood events in central Europe since AD 1500 and large-scale atmospheric circulation modes, Geophys. Res. Lett. 30, 4, 1172, DOI: 10.1029/ 2002GL016433.CrossRefGoogle Scholar
  14. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc. 77, 3, 437–471, DOI: 10.1175/ 1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  15. Kang, S.M., and J. Lu (2012), Expansion of the Hadley cell under global warming: winter versus summer, J. Climate 25, 24, 8387–8393, DOI: 10.1175/JCLI-D-12-00323.1.CrossRefGoogle Scholar
  16. Kendall, M.G. (1975), Rank Correlation Methods, 4th ed., Charles Griffin, London.Google Scholar
  17. Kyselý, J. (2002), Temporal fluctuations in heat waves at Prague-Klementinum, the Czech Republic, from 1901–1997, and their relationships to atmospheric circulation, Int. J. Climatol. 22, 1, 33–50, DOI: 10.1002/joc.720.CrossRefGoogle Scholar
  18. Lamb, H.H. (1972), British Isles Weather Types and Register of Daily Sequence of Circulation Patterns, 1861–1971, Geophysical Memoir, Vol. 116, Her Majesty’s Stationery Office, London, 85 pp.Google Scholar
  19. Mann, H.B. (1945), Non-parametric tests against trend, Econometrica 13, 3, 245–259, DOI: 10.2307/1907187.CrossRefGoogle Scholar
  20. Marin, L., M.-V. Birsan, R. Bojariu, A. Dumitrescu, D.M. Micu, and A. Manea (2014), An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period, Carpath. J. Earth Environ. Sci.. 9, 4, 253–258.Google Scholar
  21. Mavromatis, T., and D. Stathis (2011), Response of the water balance in Greece to temperature and precipitation trends, Theor. Appl. Climatol. 104, 1–2, 13–24, DOI: 10.1007/s00704-010-0320-9.CrossRefGoogle Scholar
  22. McCabe, G.J., M.P. Clark, and M.C. Serreze (2001), Trends in Northern Hemisphere surface cyclone frequency and intensity, J. Climate 14, 12, 2763–2768, DOI: 10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.CrossRefGoogle Scholar
  23. Nissen, K.M., G.C. Leckebusch, J.G. Pinto, and U. Ulbrich (2014), Mediterranean cyclones and windstorms in a changing climate, Reg. Environ. Change 14, 5, 1873–1890, DOI: 10.1007/s10113-012-0400-8.CrossRefGoogle Scholar
  24. Paciorek, C.J., J.S. Risbey, V. Ventura, and R.D. Rosen (2002), Multiple indices of northern hemisphere cyclone activity, winters 1949–99, J. Climate 15, 13, 1573–1590, DOI: 10.1175/1520-0442(2002)015<1573:MIONHC>2.0. CO;2.CrossRefGoogle Scholar
  25. Perret, R. (1987), A Classification of Meteorological Situations for Use in Prediction, Institut Suisse de Meteorologie, Zürich (in French).Google Scholar
  26. Pettitt, A.N. (1979), A non-parametric approach to the change-point problem, Appl. Statist. 28, 2, 126–136, DOI: 10.2307/2346729.CrossRefGoogle Scholar
  27. Philipp, A., J. Bartholy, C. Beck, M. Erpicum, P. Esteban, X. Fettweis, R. Huth, P. James, S. Jourdain, F. Kreienkamp, T. Krennert, S. Lykoudis, S.C. Michalides, K. Pianko-Kluczynska, P. Post, D. Rasilla Álvarez, R. Schiemann, A. Spekat, and F.S. Tymvios (2010), COST733cat–A database of weather and circulation type classifications, Phys. Chem. Earth A/B/C 35, 9–12, 360–373, DOI: 10.1016/j.pce.2009.12.010.CrossRefGoogle Scholar
  28. Salarijazi, M., A.-M. Akhond-Ali, A. Adib, and A. Daneshkhah (2012), Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station, Afr. J. Agric. Res. 7, 32, 4540–4552, DOI: 10.5897/AJAR12.650.CrossRefGoogle Scholar
  29. Wang, X.L., Y. Feng, G.P. Compo, V.R. Swail, F.W. Zwiers, R.J. Allan, and P.D. Sardeshmukh (2013), Trends and low frequency variability of extratropical cyclone activity in the ensemble of twentieth century reanalysis, Clim. Dynam. 40, 11–12, 2775–2800, DOI: 10.1007/s00382-012-1450-9.CrossRefGoogle Scholar
  30. Werner, P.C., F.-W. Gerstengarbe, K. Fraedrich, and H. Oesterle (2000), Recent climate change in the North Atlantic/European sector, Int. J. Climatol. 20, 5, 463–471, DOI: 10.1002/(SICI)1097-0088(200004)20:5<463::AID-JOC 483>3.0.CO;2-T.CrossRefGoogle Scholar
  31. Yarnal, B., A.C. Comrie, B. Frakes, and D.P. Brown (2001), Developments and prospects in synoptic climatology, Int. J. Climatol. 21, 15, 1923–1950, DOI: 10.1002/joc.675.CrossRefGoogle Scholar
  32. Zhang, X.D., J.E. Walsh, J. Zhang, U.S. Bhatt, and M. Ikeda (2004), Climatology and interannual variability of arctic cyclone activity: 1948–2002, J. Climate 17, 12, 2300–2317, DOI: 10.1175/1520-0442(2004)017<2300:CAIVOA> 2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© Barbu et al. 2016

Authors and Affiliations

  • Nicu Barbu
    • 1
    Email author
  • Cristina Burada
    • 3
  • Sabina Stefan
    • 1
  • Florinela Georgescu
    • 2
  1. 1.Faculty of Physics, MagureleUniversity of BucharestBucharestRomania
  2. 2.National Meteorological AdministrationBucharestRomania
  3. 3.National Meteorological Administration–Regional Meteorological CenterCraiovaRomania

Personalised recommendations