Advertisement

Acta Geophysica

, Volume 64, Issue 2, pp 443–462 | Cite as

ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

  • Irfan Akca
Open Access
Acta Geophysica

Abstract

ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

Key words

2D inversion GUI finite elements hybrid mesh 

References

  1. Akca, I., and A.T. Başokur (2010), Extraction of structure-based geoelectric models by hybrid genetic algorithms, Geophysics 75, 1, F15–F22, DOI: 10.1190/ 1.3273851.CrossRefGoogle Scholar
  2. Başokur, A.T., and I. Akca (2011), Object-based model verification by a genetic algorithm approach: Application in archeological targets, J. Appl. Geophys. 74, 4, 167–174, DOI: 10.1016/j.jappgeo.2011.05.004.CrossRefGoogle Scholar
  3. Bertin, J., and J. Loeb (1976), Experimental and Theoretical Aspects of Induced Polarization, Vols. 1 and 2, Gebrüder Borntraeger, Berlin.Google Scholar
  4. Coggon, J.H. (1971), Electromagnetic and electrical modeling by the finite element method, Geophysics 36, 1, 132–155, DOI: 10.1190/1.1440151.CrossRefGoogle Scholar
  5. DC2DInvRes (2014), DC2DInvRes — Tutorial, http://www.resistivity.net.Google Scholar
  6. Dey, A., and H.F. Morrison (1979), Resistivity modelling for arbitrarily shaped two-dimensional structures, Geophys. Prospect. 27, 1, 106–136, DOI: 10.1111/ j. 1365-2478.1979.tb00961.x.CrossRefGoogle Scholar
  7. Earthlmager (2009) Earthlmager 2D. Resistivity and IP inversion software. Instruction manual, Advanced Geosciences, Inc., Austin, USA, 139 pp.Google Scholar
  8. Edwards, L.S. (1977), A modified pseudosection for resistivity and IP, Geophysics 42, 5, 1020–1036, DOI: 10.1190/1.1440762.CrossRefGoogle Scholar
  9. Farquharson, C.G., and D.W. Oldenburg (1998), Non-linear inversion using general measures of data misfit and model structure, Geophys. J. Int. 134, 1, 213–227, DOI: 10.1046/j.1365-246x.1998.00555.x.CrossRefGoogle Scholar
  10. Fink, J.B., E.O. McAlister, B.K. Sternberg, W.G. Wieduwilt, and S.H. Ward (eds.) (1990), Induced Polarization: Applications and case histories, Investigations in Geophysics, No. 4, Society of Exploration Geophysicists, Tulsa, DOI: 10.1190/1.9781560802594.CrossRefGoogle Scholar
  11. Günther, T. (2004), Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements, Ph.D. Thesis, Technische Universitaet Bergakademie, Freiberg, Germany.Google Scholar
  12. Günther, T., and C. Rücker (2015), Boundless Electrical Resistivity Tomography BERT 2–the user tutorial, http://resistivity.net.Google Scholar
  13. Karaoulis, M., A. Revil, P. Tsourlos, D.D. Werkema, and B.J. Minsley (2013), IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography, Comput. Geosci. 54, 164–170, DOI: 10.1016/j.cageo. 2013.01.008.CrossRefGoogle Scholar
  14. Loke, M.H. (2014), Tutorial: 2-D and 3-D electrical imaging surveys, http://www.geotomosoft.com/coursenotes.zip.Google Scholar
  15. Loke, M.H., and R.D. Barker (1996), Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys. Prospect. 44, 1, 131–152, DOI: 10.1111/j.1365-2478.1996.tb00142.x.CrossRefGoogle Scholar
  16. Loke, M.H., J.E. Chambers, D.F. Rucker, O. Kuras, and P.B. Wilkinson (2013), Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys. 95, 135–156, DOI: 10.1016/j.jappgeo.2013.02.017.CrossRefGoogle Scholar
  17. Marescot, L., S. Rigobert, S.P. Lopes, R. Lagabrielle, and D. Chapellier (2006), A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures, J. Appl. Geophys. 60, 1, 55–67, DOI: 10.1016/ j.jappgeo.2005.12.003.CrossRefGoogle Scholar
  18. Mufti, I.R. (1976), Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures, Geophysics 41, 1, 62–78, DOI: 10.1190/1.1440608.CrossRefGoogle Scholar
  19. Oldenburg, D.W., and Y. Li (1994), Inversion of induced polarization data, Geophysics 59, 9, 1327–1341, DOI: 10.1190/1.1443692.CrossRefGoogle Scholar
  20. Öztürk Akca, C. (2011), Geoarcheological and new archaeogeopyhsical methods applied at ancient settlements: Psidia Antiocheia example, Ph.D. Thesis, Süleyman Demirel University, Isparta, Turkey.Google Scholar
  21. Pelton, W.H., L. Rijo, and C.M. Swift (1978), Inversion of two-dimensional resistivity and induced-polarization data, Geophysics 43, 4, 788–803, DOI: 10.1190/1.1440854.CrossRefGoogle Scholar
  22. Pidlisecky, A., and R. Knight (2008), FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code, Comput. Geosci. 34, 12, 1645–1654, DOI: 10.1016/ j.cageo.2008.04.001.CrossRefGoogle Scholar
  23. Pidlisecky, A., E. Haber, and R. Knight (2007), RESINVM3D: A 3D resistivity inversion package, Geophysics 72, 2, H1–H10, DOI: 10.1190/1.2402499.CrossRefGoogle Scholar
  24. Res2DInv (2014), Res2DInv user manual. Version 4.03, Geotomo Software, Pe-nang, Malaysia.Google Scholar
  25. Rijo, L. (1977), Modeling of electric and electromagnetic data, Ph.D. Thesis, University of Utah, Salt Lake City, USA.Google Scholar
  26. Rücker, C. (2011), Advanced electrical resistivity modelling and inversion using unstructured discretization, Ph.D. Thesis, Leipzig University, Germany.Google Scholar
  27. Sasaki, Y. (1994), 3-D resistivity inversion using the finite-element method, Geophysics 59, 12, 1839–1848, DOI: 10.1190/1.1443571.CrossRefGoogle Scholar
  28. Seigel, H.O. (1959), Mathematical formulation and type curves for induced polarization, Geophysics 24, 3, 547–565, DOI: 10.1190/1.1438625.CrossRefGoogle Scholar
  29. Shewchuk, R.J. (1997), Delaunay refinement mesh generation, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, USA.Google Scholar
  30. Si, H. (2008), Three dimensional boundary conforming Delaunay mesh generation, Ph.D. Thesis, Inst. für Mathematik, Technische Universitat Berlin, Germany.Google Scholar
  31. Spitzer, K. (1998), The three-dimensional DC sensitivity for surface and subsurface sources, Geophys. J. Int. 134, 3, 736–746, DOI: 10.1046/j.1365-246x.1998. 00592.x.CrossRefGoogle Scholar
  32. Sumner, J.S. (1976), Principles of Induced Polarization for Geophysical Exploration, Developments in Economic Geology, Vol. 5, Elsevier Science Publ. Co., Amsterdam.Google Scholar
  33. Tripp, A.C., G.W. Hohmann and C.M. Swift (1984), Two-dimensional resistivity inversion, Geophysics 49, 10, 1708–1717, DOI: 10.1190/1.1441578.CrossRefGoogle Scholar
  34. Tsourlos, P.I., J.E. Szymanski, and G.N. Tsokas (1998), A smoothness constrained algorithm for the fast 2-D inversion of DC resistivity and induced polarization data, J. Balkan Geophys. Soc. 1, 1, 3–13.Google Scholar
  35. Ward, S.H. (ed.) (1990), Geotechnical and Environmental Geophysics, Vols. 1–3, Investigations in Geophysics, No. 5, Soc. of Explor. Geophysicists, Tulsa.Google Scholar
  36. Wolke, R., and H. Schwetlick (1988), Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons, SIAM J. Sci. Stat. Comput. 9, 5, 907–921, DOI: 10.1137/0909062.CrossRefGoogle Scholar
  37. Zhou, J., A. Revil, M. Karaoulis, D. Hale, J. Doetsch, and S. Cuttler (2014), Image-guided inversion of electrical resistivity data, Geophys. J. Int. 197, 1, 292–309, DOI: 10.1093/gji/ggu001.CrossRefGoogle Scholar

Copyright information

© Akca 2016

Authors and Affiliations

  1. 1.Ankara University, Faculty of EngineeringDepartment of Geophysical EngineeringAnkaraTurkey

Personalised recommendations