Acta Geophysica

, Volume 64, Issue 1, pp 206–236 | Cite as

Comparison of Two Nonstationary Flood Frequency Analysis Methods within the Context of the Variable Regime in the Representative Polish Rivers

  • Witold G. Strupczewski
  • Krzysztof Kochanek
  • Ewa Bogdanowicz
  • Iwona Markiewicz
  • Wojciech Feluch
Open Access


Changes in river flow regime resulted in a surge in the number of methods of non-stationary flood frequency analysis. Common assumption is the time-invariant distribution function with time-dependent location and scale parameters while the shape parameters are time-invariant. Here, instead of location and scale parameters of the distribution, the mean and standard deviation are used. We analyse the accuracy of the two methods in respect to estimation of time-dependent first two moments, time-invariant skewness and time-dependent upper quantiles. The method of maximum likelihood (ML) with time covariate is confronted with the Two Stage (TS) one (combining Weighted Least Squares and L-moments techniques). Comparison is made by Monte Carlo simulations. Assuming parent distribution which ensures the asymptotic superiority of ML method, the Generalized Extreme Value distribution with various values of linearly changing in time first two moments, constant skewness, and various time-series lengths are considered. Analysis of results indicates the superiority of TS methods in all analyzed aspects. Moreover, the estimates from TS method are more resistant to probability distribution choice, as demonstrated by Polish rivers’ case studies.


non-stationary flood frequency analysis maximum likelihood covariance two-stage methodology L-moments 


  1. Akaike, H. (1974), A new look at the statistical model identification, IEEE Trans. Automatic Control. 19, 6, 716–723, DOI: 10.1109/TAC.1974.1100705.CrossRefGoogle Scholar
  2. Clarke, R.T. (2002a), Fitting and testing the significance of linear trends in Gumbeldistributed data, Hydrol. Earth Syst. Sci. 6, 1, 17–24, DOI: 10.5194/hess-6-17-2002.CrossRefGoogle Scholar
  3. Clarke, R.T. (2002b), Estimating time trends in Gumbel-distributed data by means of generalized linear models, Water Resour. Res. 38, 7, 16–1–16–11, DOI: 10.1029/2001WR000917.CrossRefGoogle Scholar
  4. Davison, A.C., and R.L. Smith (1990), Models for exceedances over high thresholds, J. Roy. Statist. Soc. B 52, 3, 393–442.Google Scholar
  5. Feluch, W. (1994), Selected Methods of Kernel Estimation of Probability Density Function and Regression in Hydrology, Prace Naukowe–Inżynieria Środowiska, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 85 pp. (in Polish).Google Scholar
  6. Hall, J., B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T.R. Kjeldsen, J. Kriaučiūnienė, Z.W. Kundzewicz, M. Lang, M.C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R.A.P. Perdigão, L. Plavcová, M. Rogger, J.L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl (2014), Understanding flood regime changes in Europe: A state-of-the-art assessment, Hydrol. Earth Syst. Sci. 18, 7, 2735–2772, DOI: 10.5194/hess-18-2735-2014.CrossRefGoogle Scholar
  7. Hattermann, F.F., Z.W. Kundzewicz, S. Huang, T. Vetter, F.-W. Gerstengarbe, and P. Werner (2013), Climatological drivers of changes in flood hazard in Germany, Acta Geophys. 61, 2, 463–477, DOI: 10.2478/s11600-012-0070-4.CrossRefGoogle Scholar
  8. Hosking, J.R.M. (1990), L-moments: analysis and estimation of distributions using linear combinations of order statistics, J. Roy. Statist. Soc. B 52, 1, 105–124.Google Scholar
  9. Hosking, J.R.M., and J.R. Wallis (1997), Regional Frequency Analysis: An Approach Based on L-Moments, Cambridge University Press, Cambridge, 224 pp.CrossRefGoogle Scholar
  10. Hosking, J.R.M., J.R. Wallis, and E.F. Wood (1985), Estimation of the generalized extreme-value distribution by the method of probability-weighted moments, Technometrics 27, 3, 251–261, DOI: 10.1080/00401706.1985.10488049.CrossRefGoogle Scholar
  11. Hurvich, C.M., and C.-L. Tsai (1989), Regression and time series model selection in small samples, Biometrika 76, 2, 297–307, DOI: 10.1093/biomet/76.2.297.CrossRefGoogle Scholar
  12. Kendall, M.G. (1975), Rank Correlation Methods, 4th ed., Charles Griffin, London.Google Scholar
  13. Kochanek, K., W.G. Strupczewski, and E. Bogdanowicz (2012), On seasonal approach to flood frequency modelling. Part II: Flood frequency analysis of Polish rivers, Hydrol. Process. 26, 5, 717–730, DOI: 10.1002/hyp.8178.CrossRefGoogle Scholar
  14. Kochanek, K., W.G. Strupczewski, E. Bogdanowicz, W. Feluch, and I. Markiewicz (2013), Application of a hybrid approach in nonstationary flood frequency analysis–a Polish perspective, Nat. Hazards Earth Syst. Sci. Discuss. 1, 5, 6001–6024, DOI: 10.5194/nhessd-1-6001-2013.CrossRefGoogle Scholar
  15. Kundzewicz, Z.W., S. Kanae, S.I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L.M. Bouwer, N. Arnell, K. Mach, R. Muir-Wood, G.R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov (2014), Flood risk and climate change: global and regional perspectives, Hydrolog. Sci. J. 59, 1, 1–28, DOI: 10.1080/02626667.2013. 857411.CrossRefGoogle Scholar
  16. Machado, M.J., B.A. Botero, J. López, F. Francés, A. Díez-Herrero, and G. Benito (2015), Flood frequency analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci. Discuss. 12, 525–568, DOI: 10.5194/hessd-12-525-2015.CrossRefGoogle Scholar
  17. Markiewicz, I., E. Bogdanowicz, and W.G. Strupczewski (2014), On the accuracy of stability of estimators of probable maximum flows. In: K. Banasik, L. Hejduk, and E. Kaznowska (eds.), Hydrologia w Inżynierii i Gospodarce Wodnej, Monografie KGW-PAN, Komitet Gospodarki Wodnej PAN, Warszawa, 81–93 (in Polish).Google Scholar
  18. Matalas, N.C., and M.A. Benson (1968), Note on the standard error of the coefficient of skewness, Water Resour. Res. 4, 1, 204–205, DOI: 10.1029/WR004i001p00204.CrossRefGoogle Scholar
  19. Milly, P.C.D., J. Betancourt, M. Falkenmark, R.M. Hirsch, Z.W. Kundzewicz, D.P. Lettenmaier, and R.J. Stouffer (2008), Stationarity is dead: Whither water management? Science 319, 5863, 573–574, DOI: 10.1126/science.1151915.CrossRefGoogle Scholar
  20. Mitosek, H.T., W.G. Strupczewski, and V.P. Singh (2006), Three procedures for selection of annual flood peak distribution, J. Hydrology 323, 1–4, 57–73, DOI: 10.1016/j.jhydrol.2005.08.016.CrossRefGoogle Scholar
  21. Montanari, A., G. Young, H.H.G. Savenije, D. Hughes, T. Wagener, L.L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S.J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D.A. Post, V. Srinivasan, C. Harman, S. Thompson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev (2013), “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J. 58, 6, 1256–1275, DOI: 10.1080/02626667.2013.809088.CrossRefGoogle Scholar
  22. Pettitt, A.N. (1979), A non-parametric approach to the change-point problem, J. Roy. Statist. Soc. C 28, 2, 126–135, DOI: 10.2307/2346729.Google Scholar
  23. Rao, A.R., and K.H. Hamed (2000), Flood Frequency Analysis, CRC Press, Boca Raton, 350 pp.Google Scholar
  24. Rigby, R.A., and D.M. Stasinopoulos (2005), Generalized additive models for location, scale and shape, J. Roy. Statist. Soc. C 54, 3, 507–554, DOI: 10.1111/j.1467-9876.2005.00510.x.CrossRefGoogle Scholar
  25. Rosenblatt, M. (1956), Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. 27, 3, 832–837, DOI: 10.1214/aoms/1177728190.CrossRefGoogle Scholar
  26. Strupczewski, W.G. (1999), A farewell to the ML method in flood frequency analysis. In: V.P. Singh, I.W. Seo, and J.H. Sonu (eds.), Hydrologic Modeling. Proceedings of WEESHE, Water Resources Publications, LLC, Highlands Ranch, 291–306.Google Scholar
  27. Strupczewski, W.G., and W. Feluch (1997), System of identification of an optimum flood frequency model with time dependent parameters (IDT). In: N.B. Harmanciouglu, M.N. Alpaslan, S.D. Ozkul, and V.P. Singh (eds.), Integrated Approach to Environmental Data Management Systems, NATO ASI Series, Vol. 31, Kluwer Acad. Publ., 291–300, DOI: 10.1007/978-94-011-5616-5_25.CrossRefGoogle Scholar
  28. Strupczewski, W.G., and W. Feluch (1998), Investigation of trend in annual peak flow series. Part I. Maximum likelihood estimation. In: Proc. 2nd Int. Conf. on Climate and Water–A 1998 Perspective, 17–20 August 1998, Espoo, Finland, Vol. 1, 241–250.Google Scholar
  29. Strupczewski, W.G., and Z. Kaczmarek (1998), Investigation of trend in annual peak flow series. Part II. Weighted Least Squares estimation. In: Proc. 2nd Int. Conf. on Climate and Water–A 1998 Perspective, 17-20 August 1998, Espoo, Finland, Vol. 1, 251–263.Google Scholar
  30. Strupczewski, W.G., and Z. Kaczmarek (2001), Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation, J. Hydrol. 248, 1–4, 143–151, DOI: 10.1016/S0022-1694(01)00398-5.CrossRefGoogle Scholar
  31. Strupczewski, W.G., and H.T. Mitosek (1991), How to deal with nonstationary time series in the hydrologic projects. In: IAHS Symposium “Mitteilungsblatt des Hydrographischen Dienstes in Osterreich”, No. 65/66, Vienna, Austria, 36–40.Google Scholar
  32. Strupczewski, W.G., and H.T. Mitosek (1995), Some aspects of hydrological design under non-stationarity. In: Z. Kundzewicz (ed.), New Uncertainty Concepts in Hydrology and Water Resources, Cambridge Univ. Press, Cambridge, 39–44.CrossRefGoogle Scholar
  33. Strupczewski, W.G., and H.T. Mitosek (1998), Investigation of trend in annual peak flow series. Part III Flood analysis of Polish rivers. In: Proc. 2nd Int. Conf. on Climate and Water–A 1998 Perspective, 17-20 August 1998, Espoo, Finland, Vol. 1, 264–272.Google Scholar
  34. Strupczewski, W.G., V.P. Singh, and W. Feluch (2001a), Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation, J. Hydrol. 248, 1–4, 123–142, DOI: 10.1016/S0022-1694(01) 00397-3.CrossRefGoogle Scholar
  35. Strupczewski, W.G., V.P. Singh, and H.T. Mitosek (2001b), Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers, J. Hydrol. 248, 1–4, 152–167, DOI: 10.1016/S0022-1694(01)00399-7.CrossRefGoogle Scholar
  36. Strupczewski, W.G., V.P. Singh, and S. Weglarczyk (2002a), Asymptotic bias of estimation methods caused by the assumption of false probability distribution, J. Hydrol. 258, 1–4, 122–148, DOI: 10.1016/S0022-1694(01)00563-7.CrossRefGoogle Scholar
  37. Strupczewski, W.G., S. Węglarczyk, and V.P. Singh (2002b), Model error in flood frequency estimation, Acta Geophys. Pol. 50, 2, 279–319.Google Scholar
  38. Strupczewski, W.G., H.T. Mitosek, K. Kochanek, V.P. Singh, S. Weglarczyk (2006), Probability of correct selection from lognormal and convective diffusion models based on the likelihood ratio, Stoch. Environ. Res. Risk Assess. 20, 3, 152–163, DOI: 10.1007/s00477-005-0030-5.CrossRefGoogle Scholar
  39. Strupczewski, W.G., K. Kochanek, E. Bogdanowicz, and I. Markiewicz (2012), On seasonal approach to flood frequency modelling. Part I: Two-component distribution revisited, Hydrol. Process. 26, 5, 705–716, DOI: 10.1002/hyp.8179.CrossRefGoogle Scholar
  40. Vogel, R.M., A. Rosner, and P.H. Kirshen (2013), Brief Communication: Likelihood of societal preparedness for global change: trend detection, Nat. Hazards Earth Syst. Sci. 13, 7, 1773–1778, DOI: 10.5194/nhess-13-1773-2013.CrossRefGoogle Scholar
  41. Wallis, J.R., N.C. Matalas, and J.R. Slack (1974), Just a moment! Water Resour. Res. 10, 2, 211–219, DOI: 10.1029/WR010i002p00211.CrossRefGoogle Scholar
  42. Yevjevich, V., and J.T.B. Obeysekera (1984), Estimation of skewness of hydrologic variables, Water Resour. Res. 20, 7, 935–943, DOI: 10.1029/WR020i007p00935.CrossRefGoogle Scholar

Copyright information

© Strupczewski et al. 2016

Authors and Affiliations

  • Witold G. Strupczewski
    • 1
  • Krzysztof Kochanek
    • 1
  • Ewa Bogdanowicz
    • 2
  • Iwona Markiewicz
    • 1
  • Wojciech Feluch
    • 3
  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Project CHIHE, Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  3. 3.Warsaw University of Technology, Department of Civil Engineering in PłockPoland

Personalised recommendations