Advertisement

Acta Geophysica

, Volume 64, Issue 1, pp 237–252 | Cite as

Local Ionospheric Modeling Using the Localized Global Ionospheric Map and Terrestrial GPS

  • Mohammad Ali Sharifi
  • Saeed Farzaneh
Open Access
Article

Abstract

global ionosphere maps are generated on a daily basis at CODE using data from about 200 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content is modeled in a solargeomagnetic reference frame using a spherical harmonics expansion up to degree and order 15. The spherical Slepian basis is a set of bandlimited functions which have the majority of their energy concentrated by optimization inside an arbitrarily defined region, yet remain orthogonal within the spatial region of interest. Hence, they are suitable for decomposing the spherical harmonic models into the portions that have significant strength only in the selected areas. In this study, the converted spherical harmonics to the Slepian bases were updated by the terrestrial GPS observations by use of the least-squares estimation with weighted parameters for local ionospheric modeling. Validations show that the approach adopted in this study is highly capable of yielding reliable results.

Keyword

spherical Slepian functions spherical harmonics ionospheric modelling 

References

  1. Alizadeh, M.M., H. Schuh, S. Todorova, and M. Schmidt (2011), Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data, J. Geodesy 85, 12, 975–987, DOI: 10.1007/s00190-011-0449-z.CrossRefGoogle Scholar
  2. Angrisano, A., S. Gaglione, C. Gioia, M. Massaro, and S. Troisi (2013), Benefit of the NeQuick Galileo version in GNSS single-point positioning, Int. J. Nav. Observ. 2013, 302947, DOI: 10.1155/2013/302947.Google Scholar
  3. Beggan, C.D., J. Saarimāki, K.A. Whaler, and F.J. Simons (2013), Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int. 193, 1, 136–148, DOI: 10.1093/gji/ggs122.CrossRefGoogle Scholar
  4. Bilitza, D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The international reference ionosphere today and in the future, J. Geodesy 85, 12, 909–920, DOI: 10.1007/s00190-010-0427-x.CrossRefGoogle Scholar
  5. Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S.M. Radicella (2007), Calibration errors on experimental slant total electron content (TEC) determined with GPS, J. Geodesy 81, 2, 111–120, DOI: 10.1007/s00190-006-0093-1.CrossRefGoogle Scholar
  6. Coster, A.J., E.M. Gaposchkin, and L.E. Thornton (1992), Real-time ionospheric monitoring system using GPS, Navigation 39, 2, 191–204, DOI: 10.1002/j.2161-4296.1992.tb01874.x.CrossRefGoogle Scholar
  7. El-Arini, M.B., P.A. O’Donnell, P.M. Kellam, J.A. Klobachar, T.C. Wisser, and P.H. Doherty (1993), The FAA Wide Area Differential GPS (WADGPS) static ionospheric experiment. In: Proc. National Technical Meeting, Institute of Navigation, 20–22 January 1993, San Francisco, USA, 485–496.Google Scholar
  8. El-Arini, M.B., C.J. Hegarty, J.P. Fernow, and J.A. Klobuchar (1994a), Development of an error budget for a GPS Wide-Area Augmentation System (WAAS). In: Proc. National Technical Meeting, Institute of Navigation, 24–26 January 1994, San Diego, USA, 927–936.Google Scholar
  9. El-Arini, M.B., R.S. Conker, T.W. Albertson, J.K. Reagan, J.A. Klobuchar, and P.H. Doherty (1994b), Comparison of real-time ionospheric algorithms for a GPS Wide-Area Augmentation System (WAAS), Navigation 41, 4, 393–414, DOI: 10.1002/j.2161-4296.1994.tb01887.x.CrossRefGoogle Scholar
  10. Gao, Y., P. Heroux, and J. Kouba (1994), Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Proc. KIS-94, 30 August–2 September 1994, Banff, Canada, 109–117.Google Scholar
  11. García-Fernández, M. (2004), Contributions to the 3D ionospheric sounding with GPS data, Ph.D. Thesis, Technical University of Catalonia, Barcelonna, Spain.Google Scholar
  12. García-Fernández, M., M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orús, P. Coisson, B. Nava, and S.M. Radicella (2003), Combining ionosonde with ground GPS data for electron density estimation, J. Atmos. Sol.-Terr. Phys. 65, 6, 683–691, DOI: 10.1016/S1364-6826(03)00085-3.CrossRefGoogle Scholar
  13. Horn, R.A., and C.R. Johnson (1991), Topics in Matrix Analysis, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  14. Komjathy, A. (1997), Global ionospheric total electron content mapping using the Global Positioning System, Ph.D. Thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.Google Scholar
  15. Liao, X., and Y. Gao (2001), High-precision ionospheric TEC recovery using a regional- area GPS network, Navigation 48, 2, 101–111, DOI: 10.1002/j.2161-4296.2001.tb00232.x.CrossRefGoogle Scholar
  16. Liu, J., Z. Wang, H. Zhang, and W. Zhu (2008), Comparison and consistency research of regional ionospheric TEC models based on GPS measurements, Geomat. Inf. Sci. Wuhan Univ. 33, 5, 479–483.Google Scholar
  17. Liu, J., R. Chen, H. Kuusniemi, Z. Wang, H. Zhang, and J. Yang (2010), A preliminary study on mapping the regional ionospheric TEC using a spherical cap harmonic model in high latitudes and the Arctic Region, J. Glob. Pos. Syst. 9, 1, 22–32, DOI: 10.5081/jgps.9.1.22.CrossRefGoogle Scholar
  18. Liu, J., R. Chen, Z. Wang, and H. Zhang (2011), Spherical cap harmonic model for mapping and predicting regional TEC, GPS Solut. 15, 2, 109–119, DOI: 10.1007/s10291-010-0174-8.CrossRefGoogle Scholar
  19. Liu, J., R. Chen, J. An, Z. Wang, and J. Hyyppa (2014), Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle, J. Geophys. Res. 119, 1, 601–619, DOI: 10.1002/2013JA019501.CrossRefGoogle Scholar
  20. Mautz, R., J. Ping, K. Heki, B. Schaffrin, C. Shum, and L. Potts (2005), Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets, J. Geodesy 78, 11–12, 660–667, DOI: 10.1007/s00190-004-0432-z.Google Scholar
  21. Mikhail, E.M., and F.E. Ackermann (1976), Observations and Least Squares, IEP Series in Civil Engineering, Dun-Donnelley, New York, 497 pp.Google Scholar
  22. Nohutcu, M., M.O. Karslioglu, and M. Schmidt (2010), B-spline modeling of VTEC over Turkey using GPS observations, J. Atmos. Sol.-Terr. Phys. 72, 7–8, 617–624, DOI: 10.1016/j.jastp.2010.02.022.CrossRefGoogle Scholar
  23. Percival, D.B., and A.T. Walden (1993), Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  24. Radicella, S.M., B. Nava, and P. Coïsson (2008), Ionospheric models for GNSS single frequency range delay corrections, Fís. Tierra 20, 27–39.Google Scholar
  25. Schaer, S. (1997), How to use CODE’s Global Ionosphere Maps, Astronomical Institute, University of Berne, Switzerland, http://www.aiub.unibe.ch.Google Scholar
  26. Schaer, S. (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Berne, Switzerland.Google Scholar
  27. Schaer, S., G. Beutler, L. Mervart, M. Rothacher, and U. Wild (1995), Global and regional ionosphere models using the GPS double difference phase observable. In: G. Gendt and G. Dick (eds.), Proc. IGS Workshop on Special Topics and New Directions, 15-18 May 1995, GFZ, Potsdam, Germany, 77–92.Google Scholar
  28. Schaer, S., G. Beutler, M. Rothacher, and T.A. Springer (1996), Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. In: R.E. Neilan et al. (eds.), Proc. IGS Analysis Center Workshop, Silver Spring, USA, 19–21 March 1996, 181–192.Google Scholar
  29. Schmidt, M. (2007), Wavelet modelling in support of IRI, Adv. Space Res. 39, 5, 932–940, DOI: 10.1016/j.asr.2006.09.030.CrossRefGoogle Scholar
  30. Schmidt, M., D. Bilitza, C.K. Shum, and C. Zeilhofer (2008), Regional 4-D modeling of the ionospheric electron density, Adv. Space Res. 42, 4, 782–790, DOI: 10.1016/j.asr.2007.02.050.CrossRefGoogle Scholar
  31. Schunk, R.W., L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, M. Codrescu, C. Minter, T.J. Fuller-Rowell, R.A. Heelis, M. Hairston, and B.M. Howe (2004), Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci. 39, RS1S02, DOI: 10.1029/2002RS002794.Google Scholar
  32. Sharifi, M.A., and S. Farzaneh (2014), The spatio-spectral localization approach to modelling VTEC over the western part of the USA using GPS observations, Adv. Space Res. 54, 6, 908–916, DOI: 10.1016/j.asr.2014.05.005.CrossRefGoogle Scholar
  33. Simons, F.J. (2010), Slepian functions and their use in signal estimation and spectral analysis. In: W. Freeden, M.Z. Nashed, and T. Sonar (eds.), Handbook of Geomathematics, Springer, Berlin Heidelberg, 891–923, DOI: 10.1007/978-3-642-01546-5_30.CrossRefGoogle Scholar
  34. Simons, F.J., F.A. Dahlen, and M.A. Wieczorek (2006), Spatiospectral concentration on a sphere, SIAM Rev. 48, 3, 504–536, DOI: 10.1137/S0036144504445765.CrossRefGoogle Scholar
  35. Simons, M., S.C. Solomon, and B.H. Hager (1997), Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus, Geophys. J. Int. 131, 1, 24–44, DOI: 10.1111/j.1365-246X.1997.tb00593.x.CrossRefGoogle Scholar
  36. Skone, S.H. (1998), Wide area ionosphere grid modelling in the auroral region, Ph.D. Thesis, UCGE Report No. 20123, University of Calgary, Calgary, Canada.Google Scholar
  37. Slepian, D. (1983), Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25, 3, 379–393, DOI: 10.1137/1025078.CrossRefGoogle Scholar
  38. Stolle, C., S. Schlüter, Ch. Jacobi, and N. Jakowski (2003), 3-dimensional ionospheric electron density reconstruction based on GPS measurements, Adv. Space Res. 31, 8, 1965–1970, DOI: 10.1016/S0273-1177(03)00168-6.CrossRefGoogle Scholar
  39. Tegmark, M. (1997), How to measure CMB power spectra without losing information, Phys. Rev. D 55, 10, 5895–5907, DOI: 10.1103/PhysRevD.55.5895.CrossRefGoogle Scholar
  40. Wieczorek, M.A., and F.J. Simons (2005), Localized spectral analysis on the sphere, Geophys. J. Int. 162, 3, 655–675, DOI: 10.1111/j.1365-246X.2005.02687.x.CrossRefGoogle Scholar
  41. Wielgosz, P., D. Grejner-Brzezinska, and I. Kashani (2003), Regional ionosphere mapping with kriging and multiquadratic methods, J. GPS 2, 1, 48–55, DOI: 10.5081/jgps.2.1.48.CrossRefGoogle Scholar
  42. Wu, Y., S.G. Jin, Z.M. Wang, and J.B. Liu (2010), Cycle slip detection using multifrequency GPS carrier phase observations: A simulation study, Adv. Space Res. 46, 2, 144–149, DOI: 10.1016/j.asr.2009.11.007.CrossRefGoogle Scholar
  43. Zeilhofer, C. (2008), Multi-dimensional B-spline modeling of spatio-temporal ionospheric signals, Deutsche Geodätische Kommission, Bayerischen Akademie der Wissenschaften, München, Germany.Google Scholar

Copyright information

© Sharifi and Farzaneh 2015

Authors and Affiliations

  1. 1.School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Research Institute of Geoinformation Technology (RIGT), College of EngineeringUniversity of TehranTehranIran

Personalised recommendations