Advertisement

Acta Geophysica

, Volume 63, Issue 6, pp 1516–1539 | Cite as

An Analysis of Turbulent Heat Fluxes and the Energy Balance During the REFLEX Campaign

  • Christiaan van der TolEmail author
  • Wim Timmermans
  • Chiara Corbari
  • Arnaud Carrara
  • Joris Timmermans
  • Zhongbo Su
Open Access
Article

Abstract

Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of energy balance fluxes and vertical temperature and wind profiles. The energy balance closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the energy balance at the camelina site by 16 W m−2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin—Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB−1 = 17).

Key words

eddy covariance SEB modelling soil heat flux surface roughness 

References

  1. Bowen, I.S. (1926), The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev. 27, 6, 779–787, DOI: 10.1103/PhysRev.27.779.CrossRefGoogle Scholar
  2. Cleugh, H.A., R. Leuning, Q. Mu, and S.W. Running (2007), Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ. 106, 3, 285–304, DOI: 10.1016/j.rse.2006.07.007.CrossRefGoogle Scholar
  3. Corbari, C., D. Masseroni, and M. Mancini (2012), Effetto delle correzioni dei dati misurati da stazioni eddy covariance sulla stima dei flussi evapotraspirativi, Ital. J. Agrometeorol. 1, 35–51 (in Italian).Google Scholar
  4. de Vries, D.A. (1963), Thermal properties of soils. In: W.R. van Wijk (ed.), Physics of Plant Environment, North-Holland Publ. Co., Amsterdam.CrossRefGoogle Scholar
  5. Detto, M., N. Montaldo, J.D. Albertson, M. Mancini, and G. Katul (2006), Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy, Water Resour. Res. 42, 8, W08419, DOI: 10.1029/2005WR004693.CrossRefGoogle Scholar
  6. Dyer, A.J. (1974), A review of flux-profile relationships, Bound.-Lay. Meteorol. 7, 3, 363–372, DOI: 10.1007/BF00240838.CrossRefGoogle Scholar
  7. Eder, F., M. Schmidt, T. Damian, K. Träumner, and M. Mauder (2015), Mesoscale eddies affect near-surface turbulent exchange: evidence from lidar and tower measurements, J. Appl. Meteorol. Clim. 54, 1, 189–206, DOI: 10.1175/JAMC-D-14-0140.1.CrossRefGoogle Scholar
  8. Foken, T. (2008), The energy balance closure problem: An overview, Ecol. Appl. 18, 6, 1351–1367, DOI: 10.1890/06-0922.1.CrossRefGoogle Scholar
  9. Foken, T., M. Göckede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger (2005), Post-field data quality control. In: X. Lee, W. Massman, and B. Law (eds.), Handbook of Micrometeorology, Atmospheric and Oceanographic Sciences Library, Vol. 29, Springer Netherlands, 181–208, DOI: 10.1007/1-4020-2265-4_9.CrossRefGoogle Scholar
  10. Frank, J.M., W.J. Massman, and B.E. Ewers (2013), Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers, Agr. Forest Meteorol. 171-172, 72–81, DOI: 10.1016/j.agrformet.2012.11.005.CrossRefGoogle Scholar
  11. Gash, J.H.C. (1987), An analytical framework for extrapolating evaporation measurements by remote sensing surface temperature, Int. J. Remote Sens. 8, 8, 1245–1249, DOI: 10.1080/01431168708954769.CrossRefGoogle Scholar
  12. Gökmen, M., Z. Vekerdy, A. Verhoef, W. Verhoef, O. Batelaan, and C. van der Tol (2012), Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions, Remote Sens. Environ. 121, 261–274, DOI: 10.1016/j.rse.2012.02.003.CrossRefGoogle Scholar
  13. Hsieh, C.I., G. Katul, and T.W. Chi (2000), An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows, Adv. Water Res. 23, 7, 765–772, DOI: 10.1016/S0309-1708(99)00042-1.CrossRefGoogle Scholar
  14. Horst, T.W. (1997), A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors, Bound.-Lay. Meteorol. 82, 2, 219–233, DOI: 10.1023/A:1000229130034.CrossRefGoogle Scholar
  15. Kalma, J.D., T.R. McVicar, and M.F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys. 29, 4-5, 421–469, DOI: 10.1007/s10712-008-9037-z.CrossRefGoogle Scholar
  16. Kustas, W.P., and J.M. Norman (1996), Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrol. Sci. J. 41, 4, 495–516, DOI: 10.1080/02626669609491522.CrossRefGoogle Scholar
  17. Kustas, W.P., K.S. Humes, J.M. Norman, and M.S. Moran (1996), Single- and dualsource modeling of surface energy fluxes with radiometric surface temperature, J. Appl. Meteorol. Clim. 35, 1, 110–121, DOI: 10.1175/1520-0450(1996)035<0110:SADSMO>2.0.CO;2.CrossRefGoogle Scholar
  18. Liebethal, C., B. Huwe, and T. Foken (2005), Sensitivity analysis for two ground heat flux calculation approaches, Agr. Forest Meteorol. 132, 3–4, 253–262, DOI: 10.1016/j.agrformet.2005.08.001.CrossRefGoogle Scholar
  19. Massman, W.J. (1999), A model study of kBH −1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory, J. Hydrol. 223, 1–2, 27–43, DOI: 10.1016/S0022-1694(99)00104-3.CrossRefGoogle Scholar
  20. Owen, P.R., and W.R. Thomson (1963), Heat transfer across rough surfaces, J. Fluid Mech. 15, 3, 321–334, DOI: 10.1017/S0022112063000288.CrossRefGoogle Scholar
  21. Paulson, C.A. (1970), The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol. Clim. 9, 6, 857–861, DOI: 10.1175/1520-0450(1970)009<0857:TMROWSs 2.0.CO;2.CrossRefGoogle Scholar
  22. Raupach, M.R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Bound.-Lay. Meteorol. 71, 1-2, 211–216, DOI: 10.1007/BF00709229.CrossRefGoogle Scholar
  23. Schotanus, P., F.T.M. Nieuwstadt, and H.A.R. de Bruin (1983), Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound.-Lay. Meteorol. 26, 1, 81–93, DOI: 10.1007/BF00164332.CrossRefGoogle Scholar
  24. Stewart, J.B., W.P. Kustas, K.S. Humes, W.D. Nichols, M.S. Moran, and H.A.R. de Bruin (1994), Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas, J. Appl. Meteorol. Clim. 33, 9, 1110–1117, DOI: 10.1175/1520-0450(1994)033<1110:SHFRST>2.0.CO;2.CrossRefGoogle Scholar
  25. Su, Z., T. Schmugge, W.P. Kustas, and W.J. Massman (2001), An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol. Clim. 40, 11, 1933–1951, DOI: 10.1175/1520-0450(2001)040<1933:AEOTMF>2.0.CO;2.CrossRefGoogle Scholar
  26. Su, Z., W. Timmermans, A. Gieske, L. Jia, J.A. Elbers, A. Olioso, J. Timmermans, R. van der Velde, X. Jin, H. van der Kwast, F. Nerry, D. Sabol, J.A. Sobrino, J. Moreno, and R. Bianchi (2008), Quantification of land–atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens. 29, 17–18, 5215–5235, DOI: 10.1080/01431160802326099.CrossRefGoogle Scholar
  27. Timmermans, W.J., G. Bertoldi, J.D. Albertson, A. Olioso, Z. Su, and A.S.M. Gieske (2008), Accounting for atmospheric boundary layer variability on flux estimation from RS observations, Int. J. Remote Sens. 29, 17–18, 5275–5290, DOI: 10.1080/01431160802036383.CrossRefGoogle Scholar
  28. Timmermans, W.J., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, S. Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z.B. Su (2015), An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).Google Scholar
  29. van der Tol, C. (2012), Validation of remote sensing of bare soil ground heat flux, Remote Sens. Environ. 121, 275–286, DOI: 10.1016/j.rse.2012.02.009.CrossRefGoogle Scholar
  30. Verhoef, A., H.A.R. de Bruin, and B.J.J.M. van den Hurk (1997), Some practical notes on the parameter kB-1 for sparse vegetation, J. Appl. Meteorol. Clim. 36, 5, 560–572, DOI: 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0. CO;2.CrossRefGoogle Scholar
  31. Webb, E.K., G.I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water vapour transfer, Quart. J. Roy. Meteorol. Soc. 106, 447, 85–100, DOI: 10.1002/qj.49710644707.CrossRefGoogle Scholar
  32. Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma (2002), Energy balance closure at FLUXNET sites, Agr. Forest Meteorol. 113, 1–4, 223–243, DOI: 10.1016/S0168-1923(02)00109-0.CrossRefGoogle Scholar
  33. Yang, K., T. Koike, and D. Yang (2003), Surface flux parameterization in the Tibetan Plateau, Bound.-Lay. Meteorol. 106, 2, 245–262, DOI: 10.1023/A:1021152407334.CrossRefGoogle Scholar

Copyright information

© van der Tol et al. 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Christiaan van der Tol
    • 1
    Email author
  • Wim Timmermans
    • 1
  • Chiara Corbari
    • 2
  • Arnaud Carrara
    • 3
  • Joris Timmermans
    • 1
  • Zhongbo Su
    • 1
  1. 1.Department of Water Resources, Faculty ITCUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of HydraulicEnvironmental and Surveying Engineering, Politecnico di MilanoMilanoItaly
  3. 3.CEAMFundación de la Comunidad Valenciana Centro de Estudios Ambientales del MediterraneoPaternaSpain

Personalised recommendations