Vitamin D and aspects of female fertility

Abstract

The role of vitamin D in female reproduction has been intensively examined over the last few decades. A large body of evidence suggests that vitamin D might have beneficial effects on metabolic/hormonal parameters of PCOS and endometriosis, while it appears to be associated with IVF outcomes. However, due to the heterogeneity among observational and interventional studies, no cause-effect relationship has yet been established. The aim of this review is to analyze recent in vitro animal and human studies which examined the association of vitamin D with disease entities affecting female fertility potential. Recent research data strongly imply that vitamin D is implicated in female reproduction and might represent a beneficial and inexpensive therapeutic approach, in combination with first-line medical treatments, to female infertility.

References

  1. 1.

    Holick MF, 2007 Vitamin D deficiency. N Engl J Med 357: 266–281.

    Article  CAS  Google Scholar 

  2. 2.

    Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG, 2013 Role of vitamin D in atherosclerosis. Circulation 128: 2517–2531.

    PubMed  Article  Google Scholar 

  3. 3.

    Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA, 2012 National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 9: e1001356.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Anagnostis P, Karras S, Goulis DG, 2013 Vitamin D in human reproduction: a narrative review. Int J Clin Pract 67: 225–235.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Rojansky N, Brzezinski A, Schenker JG, 1992 Seasonality in human reproduction: an update. Hum Reprod 7: 735–745.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Holick MF, Chen TC, 2008 Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87: 1080s–1086s.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Holick MF, 2008 The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med 29: 361–368.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Haussler MR, Jurutka PW, Mizwicki M, Norman AW, 2011 Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract & Res Clin Endocrinol Metab 25: 543–559.

    Article  CAS  Google Scholar 

  9. 9.

    Rosen CJ, Adams JS, Bikle DD, et al, 2012 The non-skeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 33: 456–492.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Bouillon R, Carmeliet G, Verlinden L, et al, 2008 Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29: 726–776.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Zarnani AH, Shahbazi M, Salek-Moghaddam A, et al, 2010 Vitamin D3 receptor is expressed in the endometrium of cycling mice throughout the estrous cycle. Fertil Steril 93: 2738–2743.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Shahbazi M, Jeddi-Tehrani M, Zareie M, et al, 2011 Expression profiling of vitamin D receptor in placenta, decidua and ovary of pregnant mice. Placenta 32: 657–664.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Echchgadda I, Song CS, Roy AK, Chatterjee B, 2004 Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 65: 720–729.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Wojtusik J, Johnson PA, 2012 Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol Reprod 86: 91.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Avila E, Diaz L, Halhali A, Larrea F, 2004 Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase, 1,25-dihydroxyvitamin D3 24-hydroxylase and vitamin D receptor gene expression by 8-bromo cyclic AMP in cultured human syncytiotrophoblast cells. J Steroid Biochem Mol Biol 89–90: 115–119.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Parikh G, Varadinova M, Suwandhi P, Araki T, Rosenwaks Z, Seto-Young D, 2010 Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm Metab Res 42: 754–757.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Merhi Z, Doswell A, Krebs K, Cipolla M, 2014 Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J Clin Endocrinol Metab 99: E1137–1145.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Broekmans FJ, Visser JA, Laven JS, Broer SL, Themmen AP, Fauser BC, 2008 Anti-Mullerian hormone and ovarian dysfunction. Trends Endocrinol Metab 19: 340–347

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Malloy PJ, Peng L, Wang J, Feldman D, 2009 Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology 150: 1580–1587.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Miyashita M, Koga K, Izumi G, et al, 2016 Effects of 1,25-Dihydroxy Vitamin D3 on Endometriosis. J Clin Endocrinol Metab 101: 2371–2379.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Rajaei S, Mirahmadian M, Jeddi-Tehrani M, et al, 2012 Effect of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with repeated implantation failure. Gynecol Endocrinol 28: 906–911.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Levi Setti PE, Colombo GV, Savasi V, Bulletti C, Albani E, Ferrazzi E, 2004 Implantation failure in assisted reproduction technology and a critical approach to treatment. Ann N Y Acad Sci 1034: 184–199.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Tavakoli M, Jeddi-Tehrani M, Salek-Moghaddam A, et al, 2011 Effects of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with recurrent spontaneous abortion. Fertil Steril 96: 751–757.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Barrera D, Avila E, Hernandez G, et al, 2008 Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod Biol Endocrinol 6: 3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Barrera D, Avila E, Hernandez G, et al, 2007 Estradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J Steroid Biochem Mol Biol 103: 529–532.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tuan RS, Moore CJ, Brittingham JW, Kirwin JJ, Akins RE, Wong M, 1991 In vitro study of placental trophoblast calcium uptake using JEG-3 human choriocarcinoma cells. J Cell Sci 98: 333–342.

    PubMed  CAS  Google Scholar 

  27. 27.

    Belkacemi L, Gariepy G, Mounier C, Simoneau L, Lafond J, 2003 Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta. Biol Reprod 68: 1943–1950.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Chan SY, Susarla R, Canovas D, et al, 2015 Vitamin D promotes human extravillous trophoblast invasion in vitro. Placenta 36: 403–409.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Du H, Daftary GS, Lalwani SI, Taylor HS, 2005 Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol 19: 2222–2233.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Halloran BP, DeLuca HF, 1980 Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr 110: 1573–1580.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Yoshizawa T, Handa Y, Uematsu Y, et al, 1997 Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16: 391–396.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y, 2000 Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 141: 1317–1324.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Johnson LE, DeLuca HF, 2001 Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J Nutr 131: 1787–1791.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Sun W, Xie H, Ji J, Zhou X, Goltzman D, Miao D, 2010 Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus. Am J Physiol Endocrinol Metab 299: E928–935.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Panda DK, Miao D, Bolivar I, et al, 2004 Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279: 16754–16766.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Kwiecinksi GG, Petrie GI, DeLuca HF, 1989 1,25-Dihydroxyvitamin D3 restores fertility of vitamin D-deficient female rats. Am J Physiol 256: E483–487.

    PubMed  CAS  Google Scholar 

  37. 37.

    Abbas MA, Taha MO, Disi AM, Shomaf M, 2013 Regression of endometrial implants treated with vitamin D3 in a rat model of endometriosis. Eur J Pharmacol 715: 72–75

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Yildirim B, Guler T, Akbulut M, Oztekin O, Sariiz G, 2014 1-alpha,25-dihydroxyvitamin D3 regresses endometriotic implants in rats by inhibiting neovascularization and altering regulation of matrix metalloproteinase. Postgrad Med 126: 104–110.

    PubMed  Article  Google Scholar 

  39. 39.

    Mariani M, Vigano P, Gentilini D, et al, 2012 The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation. Hum Reprod 27: 2010–2019

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Tesic D, Hawes JE, Zosky GR, Wyrwoll CS, 2015 Vitamin D Deficiency in BALB/c Mouse Pregnancy Increases Placental Transfer of Glucocorticoids. Endocrinology 156: 3673–3679.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO, 2004 The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 89: 2745–2749.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R, 2011 Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: 219–231.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Pittas AG, Lau J, Hu FB, Dawson-Hughes B, 2007 The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92: 2017–2029.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Maestro B, Davila N, Carranza MC, Calle C, 2003 Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 84: 223–230.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Maestro B, Molero S, Bajo S, Davila N, Calle C, 2002 Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct 20: 227–232.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Mahmoudi T, 2009 Genetic variation in the vitamin D receptor and polycystic ovary syndrome risk. Fertil Steril 92: 1381–1383.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Mahmoudi T, Majidzadeh AK, Farahani H, et al, 2015 Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study. Int J Reprod Biomed (Yazd) 13: 793–800.

    Article  CAS  Google Scholar 

  48. 48.

    Jedrzejuk D, Laczmanski L, Milewicz A, et al, 2015 Classic PCOS phenotype is not associated with deficiency of endogenous vitamin D and VDR gene polymorphisms rs731236 (TaqI), rs7975232 (ApaI), rs1544410 (BsmI), rs10735810 (FokI): a case-control study of lower Silesian women. Gynecol Endocrinol 31: 976–979.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Dasgupta S, Dutta J, Annamaneni S, Kudugunti N, Battini MR, 2015 Association of vitamin D receptor gene polymorphisms with polycystic ovary syndrome among Indian women. Indian J Med Res 142: 276–285.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Ranjzad F, Mahmoudi T, Irani Shemirani A, et al, 2012 A common variant in the adiponectin gene and polycystic ovary syndrome risk. Mol Biol Rep 39: 2313–2319.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Zadeh-Vakili A, Ramezani Tehrani F, Daneshpour MS, Zarkesh M, Saadat N, Azizi F, 2013 Genetic polymorphism of vitamin D receptor gene affects the phenotype of PCOS. Gene 515: 193–196.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Wehr E, Trummer O, Giuliani A, Gruber HJ, Pieber TR, Obermayer-Pietsch B, 2011 Vitamin D-associated polymorphisms are related to insulin resistance and vitamin D deficiency in polycystic ovary syndrome. Eur J Endocrinol 164: 741–749.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Ranjzad F, Mahban A, Shemirani AI, et al, 2011 Influence of gene variants related to calcium homeostasis on biochemical parameters of women with polycystic ovary syndrome. J Assist Reprod Genet 28: 225–232.

    PubMed  Article  Google Scholar 

  54. 54.

    Panidis D, Balaris C, Farmakiotis D, et al, 2005 Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin Chem 51: 1691–1697.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Mahmoudi T, Gourabi H, Ashrafi M, Yazdi RS, Ezabadi Z, 2010 Calciotropic hormones, insulin resistance, and the polycystic ovary syndrome. Fertil Steril 93: 1208–1214.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Ngo DT, Chan WP, Rajendran S, et al, 2011 Determinants of insulin responsiveness in young women: Impact of polycystic ovarian syndrome, nitric oxide, and vitamin D. Nitric oxide 25: 326–330.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Sadhir M, Kansra AR, Menon S, 2015 Vitamin D Deficiency among Adolescent Females with Polycystic Ovary Syndrome. J Pediatr Adolesc Gynecol 28: 378–381.

    PubMed  Article  Google Scholar 

  58. 58.

    Joham AE, Teede HJ, Cassar S, et al, 2015 Vitamin D in polycystic ovary syndrome: Relationship to obesity and insulin resistance. Mol Nutr Food Res 60: 110–118.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Muscogiuri G, Policola C, Prioletta A, et al, 2012 Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clinl Nutr 31: 476–480.

    Article  CAS  Google Scholar 

  60. 60.

    Hahn S, Haselhorst U, Tan S, et al, 2006 Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes 114: 577–583.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Sahin S, Eroglu M, Selcuk S, et al, 2014 Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci 18: 2851–2856.

    PubMed  CAS  Google Scholar 

  62. 62.

    Ganie MA, Marwaha RK, Nisar S, et al, 2016 Impact of hypovitaminosis D on clinical, hormonal and insulin sensitivity parameters in normal body mass index polycystic ovary syndrome women. J Obstet Gynaecol 36: 508–512.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Yildizhan R, Kurdoglu M, Adali E, et al, 2009 Serum 25-hydroxyvitamin D concentrations in obese and non-obese women with polycystic ovary syndrome. Arch Gynecol Obstet 280: 559–563.

    PubMed  Article  Google Scholar 

  64. 64.

    Wehr E, Pilz S, Schweighofer N, et al, 2009 Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol 161: 575–582.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Li HW, Brereton RE, Anderson RA, Wallace AM, Ho CK, 2011 Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 60: 1475–1481.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Patra SK, Nasrat H, Goswami B, Jain A, 2012 Vitamin D as a predictor of insulin resistance in polycystic ovarian syndrome. Diabetes Metab Syndr 6: 146–149.

    PubMed  Article  Google Scholar 

  67. 67.

    Mishra S, Das AK, Das S, 2016 Hypovitaminosis D and Associated Cardiometabolic Risk in Women with PCOS. J Clin Diagn Res 10: Bc01–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Savastano S, Valentino R, Di Somma C, et al, 2011 Serum 25-Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product (PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS. Nutr Metab (Lond) 8: 84.

    Article  CAS  Google Scholar 

  69. 69.

    Pal L, Zhang H, Williams J, et al, 2016 Vitamin D Status Relates to Reproductive Outcome in Women With Polycystic Ovary Syndrome: Secondary Analysis of a Multicenter Randomized Controlled Trial. J Clin Endocrinol Metab 101: 3027–3035.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Ott J, Wattar L, Kurz C, et al, 2012 Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study. Eur J Endocrinol 166: 897–902.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Thys-Jacobs S, Donovan D, Papadopoulos A, Sarrel P, Bilezikian JP, 1999 Vitamin D and calcium dysregulation in the polycystic ovarian syndrome. Steroids 64: 430–435.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Rashidi B, Haghollahi F, Shariat M, Zayerii F, 2009 The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: a pilot study. Taiwan J Obstet Gynecol 48: 142–147.

    PubMed  Article  Google Scholar 

  73. 73.

    Firouzabadi R, Aflatoonian A, Modarresi S, Sekhavat L, MohammadTaheri S, 2012 Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement Ther Clin Pract 18: 85–88.

    PubMed  Article  Google Scholar 

  74. 74.

    Asadi M, Matin N, Frootan M, Mohamadpour J, Qorbani M, Tanha FD, 2014 Vitamin D improves endometrial thickness in PCOS women who need intrauterine insemination: a randomized double-blind placebo-controlled trial. Arch Gynecol Obstet 289: 865–870.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Wehr E, Pieber TR, Obermayer-Pietsch B, 2011 Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Invest 34: 757–763.

    PubMed  CAS  Google Scholar 

  76. 76.

    Selimoglu H, Duran C, Kiyici S, et al, 2010 The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest 33: 234–238.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Pal L, Berry A, Coraluzzi L, et al, 2012 Therapeutic implications of vitamin D and calcium in overweight women with polycystic ovary syndrome. Gynecol Endocrinol 28: 965–968.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Razavi M, Jamilian M, Karamali M, Bahmani F, Aghadavod E, Asemi Z, 2016 The Effects of Vitamin D-K-Calcium Co-Supplementation on Endocrine, Inflammation, and Oxidative Stress Biomarkers in Vitamin D-Deficient Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Horm Metab Res 48: 446–451.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Kotsa K, Yavropoulou MP, Anastasiou O, Yovos JG, 2009 Role of vitamin D treatment in glucose metabolism in polycystic ovary syndrome. Fertil Steril 92: 1053–1058.

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Rahimi-Ardabili H, Pourghassem Gargari B, Farzadi L, 2013 Effects of vitamin D on cardiovascular disease risk factors in polycystic ovary syndrome women with vitamin D deficiency. J Endocrinol Invest 36: 28–32.

    PubMed  CAS  Google Scholar 

  81. 81.

    Raja-Khan N, Shah J, Stetter CM, et al, 2014 High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: a randomized, controlled pilot trial. Fertil Steril 101: 1740–1746.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Ardabili HR, Gargari BP, Farzadi L, 2012 Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency. Nutr Res 32: 195–201.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Asemi Z, Foroozanfard F, Hashemi T, Bahmani F, Jamilian M, Esmaillzadeh A, 2015 Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin Nutr 34: 586–592.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Garg G, Kachhawa G, Ramot R, et al, 2015 Effect of vitamin D supplementation on insulin kinetics and cardiovascular risk factors in polycystic ovarian syndrome: a pilot study. Endocr Connect 4: 108–116.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    He C, Lin Z, Robb SW, Ezeamama AE, 2015 Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis. Nutrients 7: 4555–4577.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Jia XZ, Wang YM, Zhang N, et al, 2015 Effect of vitamin D on clinical and biochemical parameters in polycystic ovary syndrome women: A meta-analysis. J Obstet Gynaecol Res 41: 1791–1802.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Fang F, Ni K, Cai Y, Shang J, Zhang X, Xiong C, 2017 Effect of vitamin D supplementation on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Clin Pract 26: 53–60.

    PubMed  Article  Google Scholar 

  88. 88.

    Xue Y, Xu P, Xue K, et al, 2017 Effect of vitamin D on biochemical parameters in polycystic ovary syndrome women: a meta-analysis. Arch Gynecol Obstet 295: 487–496.

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Diamanti-Kandarakis E, Katsikis I, Piperi C, et al, 2008 Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 69: 634–641.

    Article  CAS  Google Scholar 

  90. 90.

    Merhi Z, 2014 Advanced glycation end products and their relevance in female reproduction. Hum Reprod 29: 135–145

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Kalea AZ, Schmidt AM, Hudson BI, 2009 RAGE: a novel biological and genetic marker for vascular disease. Clin Sci (Lond) 116: 621–637.

    Article  CAS  Google Scholar 

  92. 92.

    Irani M, Minkoff H, Seifer DB, Merhi Z, 2014 Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab 99: E886–890.

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Irani M, Seifer DB, Grazi RV, et al, 2015 Vitamin D Supplementation decreases TGF-betal bioavailability in PCOS: A randomized placebo-controlled trial. J Clin Endocrinol Metab 100: 4307–4314.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Raja-Khan N, Kunselman AR, Demers LM, Ewens KG, Spielman RS, Legro RS, 2010 A variant in the fibrillin-3 gene is associated with TGF-beta and inhibin B levels in women with polycystic ovary syndrome. Fertil Steril 94: 2916–2919.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Tal R, Seifer DB, Shohat-Tal A, Grazi RV, Malter HE, 2013 Transforming growth factor-betal and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation. Fertil Steril 100: 538–543.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Karras SN, Anagnostis P, Naughton D, Annweiler C, Petroczi A, Goulis DG, 2015 Vitamin D during pregnancy: why observational studies suggest deficiency and interventional studies show no improvement in clinical outcomes? A narrative review. J Endocrinol Invest 38: 1265–1275.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Bulun SE, 2009 Endometriosis. N Engl J Med 360: 268–279.

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Vigano P, Lattuada D, Mangioni S, et al, 2006 Cycling and early pregnant endometrium as a site of regulated expression of the vitamin D system. J Mol Endocrinol 36: 415–424.

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Hartwell D, Rodbro P, Jensen SB, Thomsen K, Christiansen C, 1990 Vitamin D metabolites—relation to age, menopause and endometriosis. Scand J Clin Lab Invest 50: 115–121.

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Agic A, Xu H, Altgassen C, et al, 2007 Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Repr Sci 14: 486–497.

    Article  CAS  Google Scholar 

  101. 101.

    Harris HR, Chavarro JE, Malspeis S, Willett WC, Missmer SA, 2013 Dairy-food, calcium, magnesium, and vitamin D intake and endometriosis: a prospective cohort study. Am J Epidemiol 177: 420–430.

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Ciavattini A, Serri M, Delli Carpini G, Morini S, Clemente N, 2017 Ovarian endometriosis and vitamin D serum levels. Gynecol Endocrinol 33: 164–167.

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Somigliana E, Panina-Bordignon P, Murone S, Di Lucia P, Vercellini P, Vigano P, 2007 Vitamin D reserve is higher in women with endometriosis. Hum Reprod 22: 2273–2278.

    PubMed  Article  Google Scholar 

  104. 104.

    Ferrero S, Gillott DJ, Anserini P, et al, 2005 Vitamin D binding protein in endometriosis. J Soc Gynecol Investig 12: 272–277.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Borkowski J, Gmyrek GB, Madej JP, et al, 2008 Serum and peritoneal evaluation of vitamin D-binding protein in women with endometriosis. Postepy Hig Med Dosw (Online) 62: 103–109.

    Google Scholar 

  106. 106.

    Cho S, Choi YS, Yim SY, et al, 2012 Urinary vitamin D-binding protein is elevated in patients with endometriosis. Hum Reprod 27: 515–522.

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Hwang JH, Wang T, Lee KS, Joo JK, Lee HG, 2013 Vitamin D binding protein plays an important role in the progression of endometriosis. Int J Mol Med 32: 1394–1400.

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Faserl K, Golderer G, Kremser L, et al, 2011 Polymorphism in vitamin D-binding protein as a genetic risk factor in the pathogenesis of endometriosis. J Clin Endocrinol Metab 96: E233–241

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Vilarino FL, Bianco B, Lerner TG, et al, 2011 Analysis of vitamin D receptor gene polymorphisms in women with and without endometriosis. Hum Immunol 72: 359–363.

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Ozkan S, Jindal S, Greenseid K, Shu J, Zeitlian G, Hickmon C, et al, 2010 Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 94: 1314–1319.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Rudick B, Ingles S, Chung K, Stanczyk F, Paulson R, Bendikson K, 2012 Characterizing the influence of vitamin D levels on IVF outcomes. Hum Reprod 27: 3321–3327.

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Rudick BJ, Ingles SA, Chung K, Stanczyk FZ, Paulson RJ, Bendikson KA, 2014 Influence of vitamin D levels on in vitro fertilization outcomes in donor-recipient cycles. Fertil Steril 101: 447–452.

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Garbedian K, Boggild M, Moody J, Liu KE, 2013 Effect of vitamin D status on clinical pregnancy rates following in vitro fertilization. CMAJ open 1: E77–82.

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Paffoni A, Ferrari S, Vigano P, et al, 2014 Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J Clin Endocrinol Metab 99: E2372–2376.

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Farzadi L, Khayatzadeh Bidgoli H, Chojazadeh et al, 2015 Correlation between follicular fluid 25-OH vitamin D and assisted reproductive outcomes. Iran J Reprod Med 13: 361–366.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Polyzos NP, Anckaert E, Guzman L, et al, 2014 Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI. Hum Reprod 29: 2032–2040.

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Anifandis GM, Dafopoulos K, Messini CI, et al, 2010 Prognostic value of follicular fluid 25-OH vitamin D and glucose levels in the IVF outcome. Reprod Biol Endocrinol 8: 91.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Aleyasin A, Hosseini MA, Mahdavi A, et al, 2011 Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol 159: 132–137.

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Firouzabadi RD, Rahmani E, Rahsepar M, Firouzabadi MM, 2014 Value of follicular fluid vitamin D in predicting the pregnancy rate in an IVF program. Arch Gynecol Obstet 289: 201–206.

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Franasiak JM, Molinaro TA, Dubell EK, et al, 2015 Vitamin D levels do not affect IVF outcomes following the transfer of euploid blastocysts. Am J Obstet Gynecol 212: 315.e1–6.

    Article  CAS  Google Scholar 

  121. 121.

    van de Vijver A, Drakopoulos P, Van Landuyt L, et al, 2016 Vitamin D deficiency and pregnancy rates following frozen-thawed embryo transfer: a prospective cohort study. Hum Reprod 31: 1749–1754.

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Fabris A, Pacheco A, Cruz M, Puente JM, Fatemi H, Garcia-Velasco JA, 2014 Impact of circulating levels of total and bioavailable serum vitamin D on pregnancy rate in egg donation recipients. Fertil Steril 102: 1608–1612.

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Aflatoonian A, Arabjahvani F, Eftekhar M, Sayadi M, 2014 Effect of vitamin D insufficiency treatment on fertility outcomes in frozen-thawed embryo transfer cycles: A randomized clinical trial. Iran J Reprod Med 12: 595–600.

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Lv SS, Wang JY, Wang XQ, Wang Y, Xu Y, 2016 Serum vitamin D status and in vitro fertilization outcomes: a systematic review and meta-analysis. Arch Gynecol Obstet 293: 1339–1345.

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Holick MF, Binkley NC, Bischoff-Ferrari HA, et al, 2011 Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96: 1911–1930.

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Rosen CJ, Abrams SA, Aloia JF, et al, 2012 IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab 97: 1146–1152.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Heaney RP, Recker RR, Grote J, Horst RL, Armas LA, 2011 Vitamin D(3) is more potent than vitamin D(2) in humans. J Clin Endocrinol Metab 96: E447–452.

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R, 1998 Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 68: 854–858.

    PubMed  Article  CAS  Google Scholar 

  129. 129.

    Armas LA, Hollis BW, Heaney RP, 2004 Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89: 5387–5391.

    PubMed  Article  CAS  Google Scholar 

  130. 130.

    Binkley N, Gemar D, Engelke J, et al, 2011 Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J Clin Endocrinol Metab 96: 981–988.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Kassi MD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voulgaris, N., Papanastasiou, L., Piaditis, G. et al. Vitamin D and aspects of female fertility. Hormones 16, 5–21 (2017). https://doi.org/10.14310/horm.2002.1715

Download citation

Key words

  • Endometriosis
  • Female fertility
  • IVF
  • PCOS
  • Vitamin D