Muscular effects of vitamin D in young athletes and non-athletes and in the elderly

Abstract

Muscles are major targets of vitamin D. Exposure of skeletal muscles to vitamin D induces the expression of multiple myogenic transcription factors enhancing muscle cell proliferation and differentiation. At the same time vitamin D suppresses the expression of myostatin, a negative regulator of muscle mass. Moreover, vitamin D increases the number of type II or fast twitch muscle cells and in particular that of type IIA cells, while its deficiency causes type IIA cell atrophy. Furthermore, vitamin D supplementation in young males with low vitamin D levels increases the percentage of type IIA fibers in muscles, causing an increase in muscular high power output. Vitamin D levels are strongly associated with exercise performance in athletes and physically active individuals. In the elderly and in adults below the age of 65, several studies have established a close association between vitamin D levels and neuromuscular coordination. The aim of this review is to appraise our current understanding of the significance of vitamin D on muscular performance in both older and frail individuals as well as in younger adults, athletes or non-athletes with regard to both ordinary everyday musculoskeletal tasks and peak athletic performance.

References

  1. 1.

    Park SY, Murphy SP, Wilkens LR, Nomura AM, Henderson BE, Kolonel LN, 2007 Calcium and vitamin D intake and risk of colorectal cancer: The multiethnic cohort study. Am J Epidemiol 165: 784–793.

    PubMed  Article  Google Scholar 

  2. 2.

    Todd JJ, Pourshahidi LK, McSorley EM, Madigan SM, Magee PJ, 2015 Vitamin D: Recent advances and implications for athletes. Sports Med 45: 213–229.

    PubMed  Article  Google Scholar 

  3. 3.

    Agergaard J, Trøstrup J, Uth J, et al, 2015 Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? A randomized controlled trial. Nutr Metab (London) 30: 12–32.

    Google Scholar 

  4. 4.

    Garay E, Jankowski P, Lizano P, et al, 2007 Calcitriol derivatives with two different side-chains at C-20. Part 4: Further chain modifications that alter VDR-dependent monocytic differentiation potency in human leukemia cells. Bioorg Med Chem 15: 4444–4455.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Pojednic RM, Ceglia L, 2014 The emerging biomolecular role of vitamin D in skeletal muscle. Exerc Sport Sci Rev 42: 76–81.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Artaza JN, Mehrotra R, Norris KC, 2009 Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol 4: 1515–1522.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Moran DS, McClung JP, Kohen T, Lieberman HR, 2013 Vitamin D and physical performance. Sports Med 43: 601–611.

    PubMed  Article  Google Scholar 

  8. 8.

    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN, 2011 l,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152: 2976–2986.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Lee SJ, Lee YS, Zimmers TA, et al, 2010 Regulation of muscle mass by follistatin and activins. Mol Endocrinol 24: 1998–2008.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Angeline ME, Gee AO, Shindle M, Warren RF, Rodeo SA, 2013 The effects of vitamin D deficiency in athletes. Am J Sports Med 41: 461–464.

    PubMed  Article  Google Scholar 

  11. 11.

    Shuler FD, Wingate MK, Moore GH, Giangarra C, 2012 Sports health benefits of vitamin D. Sports Health 4: 496–501.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Birge SJ, Haddad JG, 1975 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest 56: 1100–1107.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Morton JP, Iqbal Z, Drust B, Burgess D, Close GL, Brukner PD, 2012 Seasonal variation in vitamin D status in professional soccer players of the English Premier League. Appl Physiol Nutr Metab 37: 798–802.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Deschenes MR, Kraemer WJ, 2002 Performance and physiologic adaptations to resistance training. Am J Phys Med Rehabil 81: Suppl 11: 3–16.

    Article  Google Scholar 

  15. 15.

    Beavers KM, Beavers DP, Houston DK, et al, 2013 Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study. Am J Clin Nutr 97: 552–560.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Oh J, Weng S, Felton SK, et al, 2009 l,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 120: 687–698.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Rigby WF, Denome S, Fanger MW, 1987 Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest 79: 1659–1664.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Simpson RU, Hershey SH, Nibbelink KA, 2007 Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem Mol Biol 103: 521–524.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Artaza JN, Mehrotra R, Norris KC, 2009 Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol 4: 1515–1522.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mozos I, Marginean O, 2015 Links between vitamin D deficiency and cardiovascular diseases. Biomed Res Int 2015: 109275.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Saleh FN, Schirmer H, Sundsfjord J, Jorde E, 2003 Parathyroid hormone and left ventricular hypertrophy. Eur Heart J 24: 2054–2060.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Al Mheid I, Patel R, Murrow J, et al, 2011 Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J Am Coll Cardiol 58: 186–192.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Tomaschitz A, Pilz S, Ritz E, et al, 2010 Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta 411: 1354–1360.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wang TJ, Pencina MJ, Booth SL, et al, 2008 Vitamin D deficiency and risk of cardiovascular disease. Circulation 117: 503–511.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lee JH, O’Keefe JH, Bell D, Hensrud DD, Holick MF, 2008 Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol 52: 1949–1956.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Martins D, Wolf M, Pan D, et al, 2007 Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: Data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 167: 1159–1165.

    Article  CAS  Google Scholar 

  27. 27.

    Muir SW, Gopaul K, Montero Odasso MM, 2012 The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing 41: 299–308.

    PubMed  Article  Google Scholar 

  28. 28.

    Muir SW, Beauchet O, Montero-Odasso M, Annweiler C, Fantino B, Speechley M, 2013 Association of executive function impairment, history of falls and physical performance in older adults: a cross-sectional population-based study in eastern France. J Nutr Health Aging 17: 661–665.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Annweiler C, Montero-Odasso M, Muir SW, Beauchet O, 2012 Vitamin D and brain imaging in the elderly: Should we expect some lesions specifically related to hypovitaminosis D? Open Neuroimag J 6: 16–18.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Mpandzou G, Aït Ben Haddou E, Regragui W, Benomar A, Yahyaoui M, 2016 Vitamin D deficiency and its role in neurological conditions: A review. Rev Neurol (Paris) 172: 109–122.

    Article  CAS  Google Scholar 

  31. 31.

    Wrzosek M, Łukaszkiewicz J, Wrzosek M, et al, 2013 Vitamin D and the central nervous system. Pharmacol Rep 65: 271–278.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC, 2013 Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 39: 458–484.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Buell JS, Dawson-Hughes B, 2008 Vitamin D and neuro cognitive dysfunction: preventing decline? Mol Aspects Med 29: 415–422.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Zehnder D, Bland R, Williams MC, et al, 2001 Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86: 888–894.

    PubMed  CAS  Google Scholar 

  35. 35.

    Cai Q, Tapper DN, Gilmour RF Jr, deTalamoni N, Aloia RC, Wasserman RH, 1994 Modulation of the excitability of avian peripheralnerves by vitamin D: relation to calbindin-D28k, calcium status and lipid composition. Cell Calcium 15: 401–410.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Cantorna MT, Hayes CE, DeLuca HF, 1996 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 93: 7861–7864.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Radak Z, Taylor AW, Ohno H, Goto S, 2001 Adaptation to exercise induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7: 90–107.

    PubMed  CAS  Google Scholar 

  38. 38.

    Pirotta S, Kidgell DJ, Daly RM, 2015 Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial. Osteoporos Int 26: 131–140.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Taghizadeh M, Talaei SA, Djazayeri A, Salami M, 2014 Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer’s disease. Nutr Neurosci 17: 172–177.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Nutt D, GABA-A Receptors, 2006 Subtypes, regional distribution, and function. J Clin Sleep Med 2: Suppl: 7–11.

    Google Scholar 

  41. 41.

    Manini TM, Clark BC, 2012 Dynapenia and aging: An update. J Gerontol A Biol Sci Med Sci 67: 28–40.

    PubMed  Article  Google Scholar 

  42. 42.

    Acworth I, Nicholass J, Morgan B, Newsholme EA, 1986 Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem Biophys Res Commun 137: 149–153.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF, 2006 Central fatigue: the serotonin hypothesis and beyond. Sports Med 36: 881–909.

    PubMed  Article  Google Scholar 

  44. 44.

    Tague SE, Smith PG, 2011 Vitamin D receptor and enzyme expressionin dorsal root ganglia of adult female rats: modulation by ovarian hormones. J Chem Neuroanat 41: 1–12.

    PubMed  Article  CAS  Google Scholar 

  45. 46.

    Dhesi JK, Jackson SH, Bearne LM, et al, 2004 Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33: 589–595.

    PubMed  Article  Google Scholar 

  46. 47.

    Lord SR, Clark RD, Webster IW, 1991 Physiological factors associated with falls in an elderly population. J Am Geriatr Soc 39: 1194–1200.

    PubMed  Article  CAS  Google Scholar 

  47. 48.

    Bouillon R, Verstuyf A, 2013 Vitamin D, mitochondria, and muscle. J Clin Endocrinol Metabol 98: 961–963.

    Article  CAS  Google Scholar 

  48. 49.

    Redzic M, Lewis RM, Thomas DT, 2013 Relationship between 25- hydoxyvitamin D, muscle strength, and incidence of injury in healthy adults: a systematic review. Nutr Res 33: 251–258.

    PubMed  Article  CAS  Google Scholar 

  49. 50.

    Ward KA, Das G, Berry JL, et al, 2009 Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab 94: 559–563.

    PubMed  Article  CAS  Google Scholar 

  50. 51.

    Foo LH, Zhang Q, Zhu K, et al, 2009 Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr 139: 1002–1007.

    PubMed  Article  CAS  Google Scholar 

  51. 52.

    Houston DK, Cesari M, Ferrucci L, et al, 2007 Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 62: 440–446.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 53.

    Tieland M, Brouwer-Brolsma E, Nienaber-Rousseau C, van Loon L, De Groot L, 2013 Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur J Clin Nutr 67: 1050–1055.

    PubMed  Article  CAS  Google Scholar 

  53. 54.

    Dam TT, von Mühlen D, Barrett-Connor EL, 2009 Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporos Int 20: 751–760.

    PubMed  Article  CAS  Google Scholar 

  54. 55.

    Okuno J, Tomura S, Yabushita N, et al, 2010 Effects of serum 25-hydroxyvitamin D(3) levels on physical fitness in community-dwelling frail women. Arch Gerontol Geriatr 50: 121–126.

    PubMed  Article  CAS  Google Scholar 

  55. 56.

    Wicherts IS, van Schoor NM, Boeke AJ, et al, 2007 Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92: 2058–2065.

    PubMed  Article  CAS  Google Scholar 

  56. 57.

    Mastaglia SR, Seijo M, Muzio D, Somoza J, Nuñez M, Oliveri B, 2011 Effect of vitamin D nutritional status on muscle function and strength in healthy women aged over sixty-five years. Nutr Health Aging 15: 349–354.

    Article  CAS  Google Scholar 

  57. 58.

    Stockton KA, Mengersen K, Paratz JD, Kandiah D, Benneil KL, 2011 Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22: 859–871.

    PubMed  CAS  Google Scholar 

  58. 59.

    Pramyothin P, Techasurungkul S, Lin J, et al, 2009 Vitamin D status and falls, frailty, and fractures among postmenopausal Japanese women living in Hawaii. Osteoporos Int 20: 1955–1962.

    PubMed  Article  CAS  Google Scholar 

  59. 60.

    Ceglia L, Chiu GR, Harris SS, Araujo AB, 2011 Serum 25-hydroxyvitamin D concentration and physical function in adult men. Clin Endocrinol (Oxf) 74: 370–376.

    Article  CAS  Google Scholar 

  60. 61.

    Matheï C, Van Pottelbergh G, Vaes B, Adriaensen W, Gruson D, Degryse JM, 2013 No relation between vitamin D status and physical performance in the oldest old: results from the Belfrail study. Age Ageing 42: 186–190.

    PubMed  Article  Google Scholar 

  61. 62.

    Allali F, El Aichaoui S, Khazani H, et al, 2009 High prevalence of hypovitaminosis D in Morocco: relationship to lifestyle, physical performance, bone markers, and bone mineral density. Semin Arthritis Rheum 38: 444–451.

    PubMed  Article  CAS  Google Scholar 

  62. 63.

    Garnero P, Munoz F, Sornay-Rendu E, Delmas PD, 2007 Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study Bone 40: 716–722.

    PubMed  Article  CAS  Google Scholar 

  63. 64.

    Hamilton B, 2010 Vitamin D and skeletal muscle. Scand J Med Sci Sports 20: 182–190.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. 65.

    Tracy BL, Ivey FM, Hurlbut D, et al, 1999 Muscle quality II. Effects Of strength training in 65- to 75-yr-old men and women. J Appl Physiol 86: 195–201.

    PubMed  Article  CAS  Google Scholar 

  65. 66.

    Bunout D, Barrera G, Leiva L, et al, 2006 Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol 41: 746–752.

    PubMed  Article  CAS  Google Scholar 

  66. 67.

    Bischoff HA, Stähelin HB, Dick W, et al, 2003 Effects of vitamin D and calcium supplementation on falls: A randomized controlled trial. J Bone Miner Res 18: 343–351.

    PubMed  Article  CAS  Google Scholar 

  67. 68.

    Moreira-Pfrimer LD, Pedrosa MA, Teixeira L, Lazaretti-Castro M, 2009 Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: A randomized double-blind controlled trial. Ann Nutr Metab 54: 291–300.

    PubMed  Article  CAS  Google Scholar 

  68. 69.

    Pfeifer M, Begerow B, Minne H, Suppan K, Fahrleitner-Pammer A, Dobnig H, 2009 Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20: 315–322.

    PubMed  Article  CAS  Google Scholar 

  69. 70.

    Bolland MJ, Grey A, 2015 Inconsistent data in text and tables. Osteoporos Int 26: 2713.

    PubMed  Article  CAS  Google Scholar 

  70. 71.

    Pfeifer M, 2015 Different outcomes of meta-analyses and data inconsistency. Osteoporos Int 26: 2715–2716.

    PubMed  Article  CAS  Google Scholar 

  71. 72.

    Rejnmark R, 2011 Effects of vitamin D on muscle function and performance: A review of evidence from randomized controlled trials. Ther Adv Chronic Dis 2: 25–37.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 73.

    Janssen HC, Samson MM, Verhaar HJ, 2010 Muscle strength and mobility in vitamin D-insufficient female geriatric patients: a randomized controlled trial on vitamin D and calcium supplementation. Aging Clin Exp Res 22: 78–84.

    PubMed  Article  CAS  Google Scholar 

  73. 74.

    Brunner RL, Cochrane B, Jackson RD, et al, 2008 Women’s health initiative investigators, calcium, vitamin D supplementation, and physical function in the Women’s Health Initiative. J Am Diet Assoc 108: 1472–1479.

    PubMed  Article  Google Scholar 

  74. 75.

    Gupta R, Sharma U, Gupta N, et al, 2010 Effect of cholecalciferol and calcium supplementation on muscle strength and energy metabolism in vitamin D-deficient Asian Indians: a randomized, controlled trial. Clin Endocrinol (Oxf) 73: 445–451.

    CAS  Google Scholar 

  75. 76.

    Owens DJ, Webber D, Impey SG, et al, 2014 Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. Eur J Appl Physiol 114: 1309–1320.

    PubMed  Article  CAS  Google Scholar 

  76. 77.

    Tomlinson PB, Joseph C, Angioi M, 2015 Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport 18: 575–580.

    PubMed  Article  Google Scholar 

  77. 78.

    Muir SW, Montero-Odasso M, 2011 Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59: 2291–2300.

    PubMed  Article  Google Scholar 

  78. 79.

    Uusi-Rasi K, Patil R, Karinkanta S, et al, 2015 Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. JAMA Intern Med 175: 703–711.

    PubMed  Article  Google Scholar 

  79. 80.

    Javadian Y, Adabi M, Heidari B, et al, 2016 Quadriceps muscle strength correlates with serum vitamin D and knee pain in knee osteoarthritis. Clin J Pain. [Epub ahead of print]

  80. 81.

    Dawson-Hughes B, 2012 70th Anniversary Conference on vitamins in early development and healthy aging: impact on infectious and chronic disease’ Symposium 1: Vitamins and cognitive development and performance serum 25-hydroxyvitamin D and muscle atrophy in the elderly. Proceedings of the Nutrition Society 71: 46–49.

    PubMed  Article  CAS  Google Scholar 

  81. 82.

    Gerdhem P, Ringsberg KAM, Obrant KJ, Akesson K, 2005 Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int 16: 1425–1431.

    PubMed  Article  CAS  Google Scholar 

  82. 83.

    Pojednic RM, Ceglia L, 2014 The emerging biomolecular role of vitamin D in skeletal muscle. Exerc Sport Sci Rev 42: 76–81.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 84.

    Shardell M, Hicks GE, Miller RR, et al, 2009 Association of low vitamin D levels with the frailty syndrome in men and women. J Gerontol (A Biol Sci Med Sci) 64: 69–75.

    Article  CAS  Google Scholar 

  84. 85.

    Houston DK, Tooze JA, Davis CC, et al, 2011 Serum 25-hydroxyvitamin D and physical function in older adults: the Cardiovascular Health Study All Stars. J Am Geriatr Soc 59: 1793–1801.

    PubMed  PubMed Central  Article  Google Scholar 

  85. 86.

    Visser M, Deeg DJH, Puts MTE, Seidell JC, Lips P, 2006 Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. Am J Clin Nutr 84: 616–622.

    PubMed  Article  CAS  Google Scholar 

  86. 87.

    Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al, 2004 Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥60 years. Am J Clin Nutrit. 80: 752–758.

    PubMed  Article  CAS  Google Scholar 

  87. 88.

    Ceglia L, 2009 Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 12: 628–633.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 89.

    Prince RL, Austin N, Devine A, Dick IM, Bruce D, Zhu K, 2008 Effects of ergocalciferol added to calcium on the risk of falls in elderly high-risk women. Arch Intern Med 168: 103–108.

    PubMed  Article  CAS  Google Scholar 

  89. 90.

    Pfeifer M, Begerow B, Minne H, Suppan K, Fahrleitner-Pammer A, Dobnig H, 2009 Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20: 315–322.

    PubMed  Article  CAS  Google Scholar 

  90. 91.

    Zhu K, Austin N, Devine A, Bruce D, Prince R, 2010 A randomized controlled trial of the effects of vitamin d on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58: 2063–2068.

    PubMed  Article  Google Scholar 

  91. 92.

    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, et al, 2004 Effect of vitamin D on falls: a meta-analysis. JAMA 291: 1999–2006.

    PubMed  Article  CAS  Google Scholar 

  92. 93.

    Houston DK, Tooze JA, Demons JL, et al, 2015 Delivery of a vitamin D intervention in homebound older adults using a meals-on-wheels program: A pilot study. J Am Geriatr Soc 63: 1861–1867.

    PubMed  PubMed Central  Article  Google Scholar 

  93. 94.

    Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al, 2016 Monthly high-dose vitamin D treatment for the prevention of functional decline: A randomized clinical trial. JAMA Intern Med 176: 175–183.

    PubMed  Article  Google Scholar 

  94. 95.

    Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR, 2013 Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci 68: 168–174.

    PubMed  Article  Google Scholar 

  95. 96.

    Boucher BJ, 2012 The problems of vitamin d insufficiency in older people. Aging Dis 3: 313–329.

    PubMed  PubMed Central  Google Scholar 

  96. 97.

    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al, 2010 Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39: 412–423.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 98.

    Mak JC, Klein LA, Finnegan T, Mason RS, Cameron ID, 2014 An initial loading-dose vitamin D versus placebo after hip fracture surgery: baseline characteristics of a randomized controlled trial (REVITAHIP). BMC Geriatr 14: 101.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 99.

    Pioli G, Lauretani F, Pellicciotti F, et al, 2016 Modifiable and non-modifiable risk factors affecting walking recovery after hip fracture. Osteoporos Int 27: 2009–2016.

    PubMed  Article  CAS  Google Scholar 

  99. 100.

    Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson JJ, 2009 Athletic performance and vitamin D. Med Sci Sport Exer 41: 1102–1110.

    Article  Google Scholar 

  100. 101.

    Koch H, Raschka C, 2000 Circannual period of physical performance analysed by means of standard cosinor analysis: a case report. Rom J Physiol 37: 51–58.

    PubMed  CAS  Google Scholar 

  101. 102.

    Erikssen J, Rodahl K, 1979 Seasonal variation in work performance and heart rate response to exercise. A study of 1,835 middle-aged men. Eur J Appl Physiol Occup Physiol 42: 133–140.

    PubMed  Article  CAS  Google Scholar 

  102. 103.

    Svedenhag J, Sjodin B, 1985 Physiological characteristics of elite male runners in and off-season. Can J Appl Sport Sci 10: 127–133.

    PubMed  CAS  Google Scholar 

  103. 104.

    Maxwell JD, 1994 Seasonal variation in vitamin D. Proc Nutr Soc 53: 533–543.

    PubMed  Article  CAS  Google Scholar 

  104. 105.

    Kopeć A, Solarz K, Majda F, Słowińska-Lisowska M, Mędraş M, 2013 An evaluation of the levels of vitamin D and bone turnover markers after the summer and winter periods in polish professional soccer players. J Hum Kinet 38: 135–140.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 106.

    Storlie DM, Pritchett K, Pritchett R, Cashman LM, 2011 12-week vitamin D supplementation trial does not significantly influence seasonal 25(OH)D status in male collegiate athletes. Int J Health Nutr 2: 8–13.

    Google Scholar 

  106. 107.

    Galan F, Ribas J, Sánchez-Martinez PM, Calero T, Sánchez AB, Muñoz A, 2012 Serum 25 — hydroxyvitamin D in early autumn to ensure vitamin D sufficiency in mid — winter in professional football players. Clin Nutr 31: 132–136.

    PubMed  Article  CAS  Google Scholar 

  107. 108.

    Holick MF, 2003 Vitamin D: a millennium perspective. J Cell Biochem 88: 296–307.

    Article  CAS  Google Scholar 

  108. 109.

    Koundourakis NE, Androulakis NE, Malliaraki N, Margioris AN, 2014 Vitamin D and exercise performance in professional soccer players. PLoS ONE 9: e101659.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 110.

    Barker T, Henriksen VT, Martins TB, et al, 2013 Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients 5: 1253–1275.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 111.

    Mowry DA, Costello MM, Heelan KA, 2009 Association among cardiorespiratory fitness, body fat, and bone marker measurements in healthy young females. J Am Osteopath Assoc 109: 534–539.

    PubMed  Google Scholar 

  111. 112.

    Forney LA, Earnest CP, Henagan TM, Johnson LE, Castleberry TJ, Stewart LK, 2014 Vitamin D status, body composition, and fitness measures in college-aged students. J Strength Cond Res 28: 814–824.

    PubMed  Article  Google Scholar 

  112. 113.

    Hamilton B, Whiteley R, Farooq A, Chalabi H, 2014 Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport 17: 139–143.

    PubMed  Article  Google Scholar 

  113. 114.

    Ardestani A, Parker B, Mathur S, et al, 2011 Relation of vitamin D level to maximal oxygen uptake in adults. Am J Cardiol 107: 1246–1249.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 115.

    Fitzgerald JS, Peterson BJ, Warpeha JM, Wilson PB, Rhodes GS, Ingraham SJ, 2014 Vitamin D status and V[combining dot above]O2peak during a skate treadmill graded exercise test in competitive ice hockey players. J Strength Cond Res 28: 3200–3205.

    PubMed  Article  Google Scholar 

  115. 116.

    Dubnov-Raz G, Livne N, Raz R, Rogel D, Cohen AH, Constantini NW, 2014 Vitamin D concentrations and physical performance in competitive adolescent swimmers. Pediatr Exerc Sci 26: 64–70.

    PubMed  Article  Google Scholar 

  116. 117.

    Wilson PB, Fitzgerald JS, Ingraham SJ, 2013 Relationship between serum 25-hydroxyvitamin D status and cardiorespiratory fitness: Findings from the National Health and Nutrition Examination Survey. Int J Cardiol 168: 3112–3113.

    PubMed  Article  Google Scholar 

  117. 118.

    Macdougall JD, Hicks AL, Macdonald JR, Mckelvie RS, Green HJ, Smith KM, 1998 Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84: 2138–2142.

    PubMed  Article  CAS  Google Scholar 

  118. 119.

    Dahlquist DT, Dieter BP, Koehle MS, 2015 Plausible ergogenic effects of vitamin D on athletic performance and recovery. J Int Soc Sports Nutr 12: 33.

    PubMed  PubMed Central  Article  Google Scholar 

  119. 120.

    Gorkin Z, Gorkin MJ, Teslenko NE, 1938 The effect of ultravioletirradiation upon training for 100m sprint. Fiziol Zh USSR 25: 695–701.

    Google Scholar 

  120. 121.

    Lehmann G, Mueller EA, 1944 Ultraviolet irradiation and altitude fitness. Luftfahrtmedizin 9: 37–43.

    Google Scholar 

  121. 122.

    Allen R, Cureton T, 1945 Effects of ultraviolet radiation on physical fitness. Arch Phys Med 10: 641–644.

    Google Scholar 

  122. 123.

    Sigmund R, 1956 Effect of ultraviolet rays on reaction time in man. Strahlentherapie 101: 623–629.

    PubMed  CAS  Google Scholar 

  123. 124.

    Rosentsweig J, 1967 The effect of a single suberythemic biodose ofultraviolet radiation upon the strength of college women. J Assoc Phys Ment Rehabil 21: 131–133.

    PubMed  CAS  Google Scholar 

  124. 125.

    Rosentswieg J, 1969 The effect of a single suberythemic biodose ofultraviolet radiation upon the endurance of college women. J Sports Med Phys Fitness 9: 104–106.

    PubMed  CAS  Google Scholar 

  125. 126.

    Cheatum BA, 1968 Effects of a single biodose of ultraviolet radiationupon the speed of college women. Res Q 39: 482–485.

    PubMed  CAS  Google Scholar 

  126. 127.

    Close GL, Russell J, Cobley JN, et al, 2013 Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci 31: 344–353.

    PubMed  Article  CAS  Google Scholar 

  127. 128.

    Wyon MA, Koutedakis Y, Wolman R, Nevill AM, Allen N, 2014 The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study. J Sci Med Sport 17: 8–12.

    PubMed  Article  Google Scholar 

  128. 129.

    Wyon MA, Wolman R, Nevill AM, et al, 2015 Acute effects of vitamin D3 supplementation on muscle strength in judoka athletes: A randomized placebo-controlled, double-blind trial. Clin J Sport Med 26: 279–284.

    Article  Google Scholar 

  129. 130.

    Close GL, Leckey J, Patterson M, et al, 2013 The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sports Med 47: 692–696.

    PubMed  Article  Google Scholar 

  130. 131.

    Jastrzębski Z, 2014 Effect of vitamin D supplementation on the level of physical fitness and blood parameters of rowers during the 8-week high intensity training. Facicula Educ Fiz şi Sport 2: 57–67.

    Google Scholar 

  131. 132.

    Jastrzębska M, Kaczmarczyk M, Jastrzębski Z, 2016 The effect of vitamin d supplementation on training adaptation in well trained soccer players. Strength Cond Res 30: 2648–2655.

    Article  Google Scholar 

  132. 133.

    Lee DM, Tajar A, Pye SR, et al, EMAS study group, 2012 Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur J Endocrinol 166: 77–85.

    PubMed  Article  CAS  Google Scholar 

  133. 134.

    Wehr E, Pilz S, Boehm BO, Marz W, Obermayer-Pietsch B, 2010 Association of vitamin D status with serum androgen levels in men. Clin Endocrinol 73: 243–248.

    Article  CAS  Google Scholar 

  134. 135.

    Nimptsch K, Platz EA, Willett WC, Giovannucci E, 2012 Association between plasma 25-OH vitamin D and testosterone levels in men. Clin Endocrinol (Oxf) 77: 106–112.

    Article  CAS  Google Scholar 

  135. 136.

    Heijboer AC, Oosterwerff M, Schroten NF, et al, 2015 Vitamin D supplementation and testosterone concentrations in male human subjects. Clin Endocrinol (Oxf) 83: 105–110.

    Article  CAS  Google Scholar 

  136. 137.

    Pilz S, Frisch S, Koertke H, et al, 2011 Effect of vitamin D supplementation on testosterone levels in men. Horm Metab Res 43: 223–225.

    PubMed  Article  CAS  Google Scholar 

  137. 138.

    Wang N, Han B, Li Q, et al, 2015 Vitamin D is associated with testosterone and hypogonadism in Chinese men: Results from a cross-sectional SPECT-China study. Reprod Biol Endocrinol 13: 74–78.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 139.

    Tak YJ, Lee JG, Kim YJ, et al, 2015 Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: a cross-sectional study. Asian JAndrol 17: 324–328.

    Article  CAS  Google Scholar 

  139. 140.

    Morley JE, 2012 Sarcopenia in the elderly. Fam Pract Suppl 1: i44–i48.

    Article  Google Scholar 

  140. 141.

    Roubenoff R, 2000 Sarcopenia: a major modifiable cause of frailty in the elderly. J Nutr Health Aging 4: 140–142.

    PubMed  CAS  Google Scholar 

  141. 142.

    Marcell TJ, 2003 Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci 58: M911–916.

    PubMed  Article  Google Scholar 

  142. 143.

    Roth SM, Ferrell RF, Hurley BF, 2000 Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging 4: 143–155.

    PubMed  CAS  Google Scholar 

  143. 144.

    Forbes GB, 1999 Longitudinal changes in adult fat-free mass: influence of body weight. Am J Clin Nutr 70: 1025–1031.

    PubMed  Article  CAS  Google Scholar 

  144. 145.

    Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Fiatarone-Singh MA, 2002 Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76: 473–481.

    PubMed  Article  CAS  Google Scholar 

  145. 146.

    Gallagher D, Ruts E, Visser M, et al, 2000 Weight stability masks sarcopenia in elderly men and women. Am J Physiol Endocrinol Metab 279: E366–E375.

    PubMed  Article  CAS  Google Scholar 

  146. 147.

    Park S, Ham JO, Lee BK, 2014 A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33: 900–908.

    PubMed  Article  CAS  Google Scholar 

  147. 148.

    Anagnostis P, Dimopoulou C, Karras S, Lambrinoudaki I, Goulis DG, 2015 Sarcopenia in post-menopausal women: Is there any role for vitamin D? Maturitas 82: 56–64.

    PubMed  Article  CAS  Google Scholar 

  148. 149.

    Lappe JM, Binkley N, 2015 Vitamin D and sarcopenia/falls. J Clin Densitom 18: 478–482.

    PubMed  Article  Google Scholar 

  149. 150.

    Kim MK, Baek KH, Song KH, et al, 2011 Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009, 2011. J Clin Endocrinol Metab 96: 3250–3256.

    PubMed  Article  CAS  Google Scholar 

  150. 151.

    Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E, 2012 Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188: 2127–2135.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 152.

    Calton EK, Keane KN, Newsholme P, Soares MJ, 2015 The impact of vitamin D levels on inflammatory status: A systematic review of immune cell studies. PLoS One 10: e0141770.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 153.

    Tidball JG, 2002 Interactions between muscle and the immune system during modified musculoskeletal loading. Clin Orthop Relat Res 403: S100–109.

    Article  Google Scholar 

  153. 154.

    Tidball JG, 2005 Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288: R345–353.

    PubMed  Article  CAS  Google Scholar 

  154. 155.

    Smith C, Kruger MJ, Smith RM, Myburgh KH, 2008 The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 38: 947–969.

    PubMed  Article  Google Scholar 

  155. 156.

    Fatouros IG, Jamurtas AZ, 2016 Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res 9: 175–186.

    PubMed  PubMed Central  Article  Google Scholar 

  156. 157.

    Dougherty KA, Dilisio MF, Agrawal DK, 2016 Vitamin D and the immunomodulation of rotator cuff injury. J Inflamm Res 9: 123–131.

    PubMed  PubMed Central  CAS  Google Scholar 

  157. 158.

    Ke CY, Yang FL, Wu WT, et al, 2016 Vitamin D3 reduces tissue damage and oxidative stress caused by exhaustive exercise. Int J Med Sci 13: 147–153.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Margioris M.D, Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koundourakis, N.E., Avgoustinaki, P.D., Malliaraki, N. et al. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones 15, 471–488 (2016). https://doi.org/10.14310/horm.2002.1705

Download citation

Key words

  • Athletic performance
  • Bone fractures
  • Muscle physiology
  • Physical activity
  • Rate of falls
  • Sarcopenia
  • Vitamin D