Advertisement

Hormones

, Volume 12, Issue 2, pp 160–171 | Cite as

Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth

  • Florian Lang
  • Christos Stournaras
Review

Abstract

Serum-and-glucocorticoid-inducible-kinase-1 (SGK1) is under regulation of several hormones, mediators and cell stressors. More specifically, SGK1 expression is particularly sensitive to glucocorticoids, mineralocorticoids, and TGFβ. Moreover, SGK1 expression is exquisitely sensitive to hypertonicity, hyperglycemia, and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositol-3-kinase, 3-phosphoinositide dependent-kinase PDK1, and mTOR. SGK1 up-regulates the Na+/K+-ATPase, a variety of carriers (e.g. NCC, NKCC, NHE1, NHE3, SGLT1, several amino acid transporters) and many ion channels (e.g. ENaC, SCN5A, TRPV4-6, Orai1/STIM1, ROMK, KCNE1/KCNQ1, GluR6, CFTR). SGK1 further up-regulates a number of enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2), and transcription factors (e.g. forkhead-transcription-factor FOXO3a, β-catenin, nuclear-factor-kappa-B NFϰB). SGK1 sensitive functions contribute to regulation of epithelial transport, excitability, degranulation, matrix protein deposition, coagulation, platelet aggregation, migration, cell proliferation, and apoptosis. Apparently, SGK1 is not required for housekeeping functions, as the phenotype of SGK1 knockout mice is mild. However, excessive SGK1 expression and activity participates in the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, inflammation, autoimmune disease, fibrosis, and tumor growth. A SGK1 gene variant (prevalence ∼3–5% prevalence in caucasians, ∼10% in Africans) predisposes to hypertension, stroke, obesity, and type 2 diabetes. Moreover, excessive salt intake and/or excessive release of glucocorticoids, mineralocorticoids, and TGFβ up-regulates SGK1 expression thus predisposing to SGK1-related diseases.

Key words

Diabetes Hypertension Fibrosis Obesity Stroke Thrombosis Tumor growth 

References

  1. 1.
    Firestone GL, Giampaolo JR, O’Keeffe BA, 2003 Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell Physiol Biochem 13: 1–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Lang F, Gorlach A, Vallon V, 2009 Targeting SGK1 in diabetes. Expert Opin Ther Targets 13: 1303–1311.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Burton TJ, Cope G, Wang J, et al, 2009 Expression of the epithelial Na(+) channel and other components of an aldosterone response pathway in human adrenocortical cells. Eur J Pharmacol 613: 176–181.PubMedCrossRefGoogle Scholar
  4. 4.
    Lang F, Bohmer C, Palmada M, et al, 2006 Pathophysiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86: 1151–1178.PubMedCrossRefGoogle Scholar
  5. 5.
    Salker MS, Christian M, Steel JH, et al, 2011 Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 17: 1509–1513.PubMedCrossRefGoogle Scholar
  6. 6.
    Raikwar NS, Liu KZ, Thomas CP, 2012 A regulated NH2-terminal Sgk1 variant with enhanced function is expressed in the collecting duct. Am J Physiol Renal Physiol 303: F1527–F1533.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lang F, Artunc F, Vallon V, 2009 The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 18: 439–448.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lang F, Gorlach A, 2010 Heterocyclic indazole derivatives as SGK1 inhibitors, WO2008138448. Expert Opin Ther Pat 20: 129–135.PubMedCrossRefGoogle Scholar
  9. 9.
    Lang F, Huang DY, Vallon V, 2010 SGK, renal function and hypertension. J Nephrol 23: Suppl 16: S124–S129.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lang F, Perrotti N, Stournaras C, 2010 Colorectal carcinoma cells-regulation of survival and growth by SGK1. Int J Biochem Cell Biol 42: 1571–1575.PubMedCrossRefGoogle Scholar
  11. 11.
    Lang F, Eylenstein A, Shumilina E, 2012 Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52: 347–354.PubMedCrossRefGoogle Scholar
  12. 12.
    Lang F, Voelkl J, 2013 Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 37: 158–167.Google Scholar
  13. 13.
    Tang C, Zelenak C, Volkl J, et al, 2011 Hydration-sensitive gene expression in brain. Cell Physiol Biochem 27: 757–768.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu C, Yosef N, Thalhamer T, et al, 2013 Induction of pathogenic T17 cells by inducible salt-sensing kinase SGK1. Nature 496: 513–517.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pasham V, Rotte A, Gu S, et al, 2013 Upregulation of intestinal NHE3 following saline ingestion. Kidney Blood Press Res 37: 48–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Cho YM, Pu HF, Huang WJ, et al, 2011 Role of serum-and glucocorticoid-inducible kinase-1 in regulating torsion-induced apoptosis in rats. Int J Androl 34: 379–389.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Feng B, Chen S, George B, Feng Q, Chakrabarti S, 2010 miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26: 40–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Kitada K, Nakano D, Liu Y, et al, 2012 Oxidative stress-induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt-sensitive rats. PLoS ONE 7: e41896.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Nasrallah R, Paris G, Hebert RL, 2012 Hypertonicity increases sodium transporters in cortical collecting duct cells independently of PGE2. Biochem Biophys Res Commun 418: 372–377.PubMedCrossRefGoogle Scholar
  20. 20.
    Tokuyama H, Wakino S, Hara Y, et al, 2012 Role of mineralocorticoid receptor/Rho/Rho-kinase pathway in obesity-related renal injury. Int J Obes (Lond) 36: 1062–1071.CrossRefGoogle Scholar
  21. 21.
    Li D, Lu Z, Jia J, Zheng Z, Lin S, 2013 Changes in microRNAs associated with podocytic adhesion damage under mechanical stress. J Renin Angiotensin Aldosterone Syst 14: 97–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Hills CE, Bland R, Squires PE, 2012 Functional expression of TRPV4 channels in human collecting duct cells: implications for secondary hypertension in diabetic nephropathy. Exp Diabetes Res 2012: 936518.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Luca F, Kashyap S, Southard C, et al, 2009 Adaptive variation regulates the expression of the human SGK1 gene in response to stress. PLoS Genet 5: e1000489.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Maranville JC, Luca F, Richards AL, et al, 2011 Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7: e1002162.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Melhem A, Yamada SD, Fleming GF, et al, 2009 Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 15: 3196–3204.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mongrain V, Hernandez SA, Pradervand S, et al, 2010 Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33: 1147–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Reiter MH, Vila G, Knosp E, et al, 2011 Opposite effects of serum- and glucocorticoid-regulated kinase-1 and glucocorticoids on POMC transcription and ACTH release. Am J Physiol Endocrinol Metab 301: E336–E341.PubMedCrossRefGoogle Scholar
  28. 28.
    Wallace K, Long Q, Fairhall EA, Charlton KA, Wright MC, 2011 Serine/threonine protein kinase SGK1 in glucocorticoid-dependent transdifferentiation of pancreatic acinar cells to hepatocytes. J Cell Sci 124: 405–413.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fernandes-Rosa FL, Hubert EL, Fagart J, et al, 2011 Mineralocorticoid receptor mutations differentially affect individual gene expression profiles in pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 96: E519–E527.CrossRefGoogle Scholar
  30. 30.
    Slezak M, Korostynski M, Gieryk A, et al, 2013 Astrocytes are a neural target of morphine action via glucocorticoid receptor-dependent signaling. Glia 61: 623–635.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsai V, Parker WE, Orlova KA, et al, 2012 Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex. [Epud ahead of print]Google Scholar
  32. 32.
    Pant A, Lee II, Lu Z, et al, 2012 Inhibition of AKT with the orally active allosteric AKT inhibitor, MK-2206, sensitizes endometrial cancer cells to progestin. PLoS ONE 7: e41593.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rusai K, Prokai A, Szebeni B, et al, 2010 Role of serum and glucocorticoid-regulated kinase-1 in the protective effects of erythropoietin during renal ischemia/reperfusion injury. Biochem Pharmacol 79: 1173–1181.PubMedCrossRefGoogle Scholar
  34. 34.
    Pessoa BS, Peixoto EB, Papadimitriou A, Lopes de Faria JM, Lopes de Faria JB, 2012 Spironolactone improves nephropathy by enhancing glucose-6-phosphate dehydrogenase activity and reducing oxidative stress in diabetic hypertensive rat. J Renin Angiotensin Aldosterone Syst 13: 56–66.PubMedCrossRefGoogle Scholar
  35. 35.
    Naito Y, Fujii A, Sawada H, et al, 2012 Effect of iron restriction on renal damage and mineralocorticoid receptor signaling in a rat model of chronic kidney disease. J Hypertens 30: 2192–2201.PubMedCrossRefGoogle Scholar
  36. 36.
    Singh BK, Singh A, Mascarenhas DD, 2010 A nuclear complex of rictor and insulin receptor substrate-2 is associated with albuminuria in diabetic mice. Metab Syndr Relat Disord 8: 355–363.PubMedCrossRefGoogle Scholar
  37. 37.
    Tani H, Torimura M, Akimitsu N, 2013 The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS ONE 8: e55684.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Harries LW, Fellows AD, Pilling LC, et al, 2012 Advancing age is associated with gene expression changes resembling mTOR inhibition: evidence from two human populations. Mech Ageing Dev 133: 556–562.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Notch EG, Chapline C, Flynn E, et al, 2012 Mitogen activated protein kinase 14-1 regulates serum glucocorticoid kinase 1 during seawater acclimation in Atlantic killifish, Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 162: 443–448.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Amato R, D’Antona L, Porciatti G, et al, 2009 SGK1 activates MDM2-dependent p53 degradation and affects cell proliferation, survival, and differentiation. J Mol Med (Berl) 87: 1221–1239.CrossRefGoogle Scholar
  41. 41.
    Pelzl L, Tolios A, Schmidt EM, et al, 2012 Translational regulation of the serum- and glucocorticoid-inducible kinase-1 (SGK1) in platelets. Biochem Biophys Res Commun 425: 1–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Miyata S, Koyama Y, Takemoto K, et al, 2011 Plasma corticosterone activates SGK1 and induces morphological changes in oligodendrocytes in corpus callosum. PLoS ONE 6: e19859.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dibble CC, Asara JM, Manning BD, 2009 Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29: 5657–5670.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fang Z, Zhang T, Dizeyi N, et al, 2012 Androgen receptor enhances p27 degradation in prostate cancer cells through rapid and selective TORC2 activation. J Biol Chem 287: 2090–2098.PubMedCrossRefGoogle Scholar
  45. 45.
    Hall BA, Kim TY, Skor MN, Conzen SD, 2012 Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression. Breast Cancer Res Treat 135: 469–479.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Heise CJ, Xu BE, Deaton SL, et al, 2010 Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J Biol Chem 285: 25161–25167.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lyo D, Xu L, Foster DA, 2010 Phospholipase D stabilizes HDM2 through an mTORC2/SGK1 pathway. Biochem Biophys Res Commun 396: 562–565.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR, 2011 Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436: 169–179.PubMedCrossRefGoogle Scholar
  49. 49.
    Peterson TR, Laplante M, Thoreen CC, et al, 2009 DEP-TOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873–886.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rosner M, Dolznig H, Fuchs C, et al, 2009 CDKs as therapeutic targets for the human genetic disease tuberous sclerosis? Eur J Clin Invest 39: 1033–1035.PubMedCrossRefGoogle Scholar
  51. 51.
    Treins C, Warne PH, Magnuson MA, Pende M, Downward J, 2010 Rictor is a novel target of p70 S6 kinase-1. Oncogene 29: 1003–1016.PubMedCrossRefGoogle Scholar
  52. 52.
    Thomanetz V, Angliker N, Cloetta D, et al, 2013 Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201: 293–308.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Domhan S, Schwager C, Wei Q, et al, 2013 Deciphering the systems biology of mTOR inhibition by integrative transcriptome analysis. Curr Pharm Des. [Epud ahead of print]Google Scholar
  54. 54.
    Na T, Wu G, Zhang W, Dong WJ, Peng JB, 2013 Disease-causing R1185C mutation of WNK4 disrupts a regulatory mechanism involving calmodulin binding and SGK1 phosphorylation sites. Am J Physiol Renal Physiol 304: F8–F18.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SM, Lee YJ, Yoon JJ, Kang DG, Lee HS, 2012 Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells. J Ethnopharmacol 141: 368–376.PubMedCrossRefGoogle Scholar
  56. 56.
    Gao D, Wan L, Inuzuka H, et al, 2010 Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell 39: 797–808.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gao D, Wan L, Wei W, 2010 Phosphorylation of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1. Protein Cell 1: 881–885.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Renauld S, Tremblay K, Ait-Benichou S, et al, 2010 Stimulation of ENaC activity by rosiglitazone is PPAR-gamma-dependent and correlates with SGK1 expression increase. J Membr Biol 236: 259–270.PubMedCrossRefGoogle Scholar
  59. 59.
    Soundararajan R, Wang J, Melters D, Pearce D, 2010 Glucocorticoid-induced Leucine zipper 1 stimulates the epithelial sodium channel by regulating serum- and glucocorticoid-induced kinase 1 stability and subcellular localization. J Biol Chem 285: 39905–39913.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Banz VM, Medova M, Keogh A, et al, 2009 Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3beta. Biochim Biophys Acta 1793: 1597–1603.PubMedCrossRefGoogle Scholar
  61. 61.
    McCaig C, Potter L, Abramczyk O, Murray JT, 2011 Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle. Biochem Biophys Res Commun 411: 227–234.PubMedCrossRefGoogle Scholar
  62. 62.
    Chandran S, Li H, Dong W, et al, 2011 Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J Biol Chem 286: 37830–37840.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Won M, Park KA, Byun HS, et al, 2009 Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration. J Hepatol 51: 67–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Mo JS, Ann EJ, Yoon JH, et al, 2011 Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci 124: 100–112.PubMedCrossRefGoogle Scholar
  65. 65.
    Borst O, Schmidt EM, Munzer P, et al, 2012 The serum-and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 119: 251–261.PubMedCrossRefGoogle Scholar
  66. 66.
    Eylenstein A, Schmidt S, Gu S, et al, 2012 Transcription factor NF-kappaB regulates expression of pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J Biol Chem 287: 2719–2730.PubMedCrossRefGoogle Scholar
  67. 67.
    Rotte A, Pasham V, Eichenmuller M, et al, 2011 Influence of dexamethasone on na+/h+ exchanger activity in dendritic cells. Cell Physiol Biochem 28: 305–314.PubMedCrossRefGoogle Scholar
  68. 68.
    Terada Y, Kuwana H, Kobayashi T, et al, 2008 Aldosterone-stimulated SGK1 activity mediates profibrotic signaling in the mesangium. J Am Soc Nephrol 19: 298–309.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Murakami Y, Hosoi F, Izumi H, et al, 2010 Identification of sites subjected to serine/threonine phosphorylation by SGK1 affecting N-myc downstream-regulated gene 1 (NDRG1)/Cap43-dependent suppression of angiogenic CXC chemokine expression in human pancreatic cancer cells. Biochem Biophys Res Commun 396: 376–381.PubMedCrossRefGoogle Scholar
  70. 70.
    Dehner M, Hadjihannas M, Weiske J, Huber O, Behrens J, 2008 Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem 283: 19201–19210.PubMedCrossRefGoogle Scholar
  71. 71.
    Sahin P, McCaig C, Jeevahan J, Murray JT, Hainsworth AH, 2013 The cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in aged human brain. Neuropathol Appl Neurobiol. [Epud ahead of print]Google Scholar
  72. 72.
    Lang F, Shumilina E, 2013 Regulation of ion channels by the serum- and glucocorticoid-inducible kinase (SGK) 1. FASEB J 27: 3–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Diakov A, Nesterov V, Mokrushina M, Rauh R, Korbmacher C, 2010 Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 26: 913–924.PubMedCrossRefGoogle Scholar
  74. 74.
    Ke Y, Butt AG, Swart M, Liu YF, McDonald FJ, 2010 COMMD1 downregulates the epithelial sodium channel through Nedd4-2. Am J Physiol Renal Physiol 298: F1445–F1456.PubMedCrossRefGoogle Scholar
  75. 75.
    Krueger B, Haerteis S, Yang L, et al, 2009 Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1. Cell Physiol Biochem 24: 605–618.PubMedCrossRefGoogle Scholar
  76. 76.
    Lu M, Wang J, Jones KT, et al, 2010 mTOR complex-2 activates ENaC by phosphorylating SGK1. J Am Soc Nephrol 21: 811–818.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lu M, Wang J, Ives HE, Pearce D, 2011 mSIN1 protein mediates SGK1 protein interaction with mTORC2 protein complex and is required for selective activation of the epithelial sodium channel. J Biol Chem 286: 30647–30654.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Menniti M, Iuliano R, Foller M, et al, 2010 60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of ENaC. Cell Physiol Biochem 26: 587–596.PubMedCrossRefGoogle Scholar
  79. 79.
    Pao AC, 2012 SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens 21: 534–540.PubMedCrossRefGoogle Scholar
  80. 80.
    Pavlov TS, Imig JD, Staruschenko A, 2010 Regulation of ENaC-mediated sodium reabsorption by peroxisome proliferator-activated receptors. PPAR Res 2010: 703735.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Reisenauer MR, Anderson M, Huang L, et al, 2009 AF17 competes with AF9 for binding to Dot1a to up-regulate transcription of epithelial Na+ channel alpha. J Biol Chem 284: 35659–35669.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Reisenauer MR, Wang SW, Xia Y, Zhang W, 2010 Dot1a contains three nuclear localization signals and regulates the epithelial Na+ channel (ENaC) at multiple levels. Am J Physiol Renal Physiol 299: F63–F76.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Soundararajan R, Ziera T, Koo E, et al, 2012 Scaffold protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J Biol Chem 287: 33014–33025.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Soundararajan R, Lu M, Pearce D, 2012 Organization of the ENaC-regulatory machinery. Crit Rev Biochem Mol Biol 47: 349–359.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Soundararajan R, Pearce D, Ziera T, 2012 The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport. Mol Cell Endocrinol 350: 242–247.PubMedCrossRefGoogle Scholar
  86. 86.
    Thomas SV, Kathpalia PP, Rajagopal M, et al, 2011 Epithelial sodium channel regulation by cell surface-associated serum- and glucocorticoid-regulated kinase 1. J Biol Chem 286: 32074–32085.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Watt GB, Ismail NA, Caballero AG, Land SC, Wilson SM, 2012 Epithelial Na(+) channel activity in human airway epithelial cells: the role of serum and glucocorticoid-inducible kinase 1. Br J Pharmacol 166: 1272–1289.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wesch D, Miranda P, Afonso-Oramas D, et al, 2010 The neuronal-specific SGK1.1 kinase regulates {delta}-epithelial Na+ channel independently of PY motifs and couples it to phospholipase C signaling. Am J Physiol Cell Physiol 299: C779–C790.PubMedCrossRefGoogle Scholar
  89. 89.
    Wiemuth D, Lott JS, Ly K, et al, 2010 Interaction of serum- and glucocorticoid regulated kinase 1 (SGK1) with the WW-domains of Nedd4-2 is required for epithelial sodium channel regulation. PLoS ONE 5: e12163.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cheng CJ, Huang CL, 2011 Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1. J Am Soc Nephrol 22: 460–471.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lin DH, Yue P, Rinehart J, et al, 2012 Protein phosphatase 1 modulates the inhibitory effect of with-no-lysine kinase 4 on ROMK channels. Am J Physiol Renal Physiol 303: F110–F119.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yue P, Lin DH, Pan CY, et al, 2009 Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. Proc Natl Acad Sci U S A 106: 15061–15066.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yue P, Sun P, Lin DH, et al, 2011 Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int 79: 423–431.CrossRefGoogle Scholar
  94. 94.
    Wang L, Zhou C, Zhu Q, et al, 2010 Up-regulation of serum- and glucocorticoid-induced protein kinase 1 in the brain tissue of human and experimental epilepsy. Neurochem Int 57: 899–905.PubMedCrossRefGoogle Scholar
  95. 95.
    Seebohm G, Strutz-Seebohm N, Ureche ON, et al, 2008 Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ Res 103: 1451–1457.PubMedCrossRefGoogle Scholar
  96. 96.
    Strutz-Seebohm N, Henrion U, Steinke K, et al, 2009 Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels. Channels (Austin) 3: 88–90.CrossRefGoogle Scholar
  97. 97.
    Miranda P, Cadaveira-Mosquera A, Gonzalez-Montelongo R, et al, 2013 The neuronal serum- and glucocorticoid-regulated kinase 1.1 reduces neuronal excitability and protects against seizures through upregulation of the M-current. J Neurosci 33: 2684–2696.PubMedCrossRefGoogle Scholar
  98. 98.
    Lamothe S, Zhang S, 2013 The serum- and glucocorticoid-inducible kinase (SGK) 1 and SGK3 Regulate hERG channel expression via ubiquitin ligase Nedd4-2 and GTPase Rab11. J Biol Chem 288: 15075–15084.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Eylenstein A, Gehring EM, Heise N, et al, 2011 Stimulation of Ca2+-channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). FASEB J 25: 2012–2021.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shin SH, Lee EJ, Hyun S, et al, 2012 Phosphorylation on the Ser 824 residue of TRPV4 prefers to bind with F-actin than with microtubules to expand the cell surface area. Cell Signal 24: 641–651.PubMedCrossRefGoogle Scholar
  101. 101.
    Caohuy H, Jozwik C, Pollard HB, 2009 Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway. J Biol Chem 284: 25241–25253.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gehring EM, Lam RS, Siraskar G, et al, 2009 PIKfyve upregulates CFTR activity. Biochem Biophys Res Commun 390: 952–957.PubMedCrossRefGoogle Scholar
  103. 103.
    Notch EG, Shaw JR, Coutermarsh BA, Dzioba M, Stanton BA, 2011 Morpholino gene knockdown in adult Fundulus heteroclitus: role of SGK1 in seawater acclimation. PLoS ONE 6: e29462.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shaw JR, Bomberger JM, VanderHeide J, et al, 2010 Arsenic inhibits SGK1 activation of CFTR Cl− channels in the gill of killifish, Fundulus heteroclitus. Aquat Toxicol 98: 157–164.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Arroyo JP, Lagnaz D, Ronzaud C, et al, 2011 Nedd4-2 modulates renal Na+-Cl− cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 22: 1707–1719.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rotin D, Staub O, 2012 Nedd4-2 and the regulation of epithelial sodium transport. Front Physiol 3: 212.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rozansky DJ, Cornwall T, Subramanya AR, et al, 2009 Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest 119: 2601–2612.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Vallon V, Schroth J, Lang F, Kuhl D, Uchida S, 2009 Expression and phosphorylation of the Na+-Cl− cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297: F704–F712.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Voelkl J, Lin Y, Alesutan I, et al, 2012 SGK1 sensitivity of Na(+)/H(+) exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol 107: 236.PubMedCrossRefGoogle Scholar
  110. 110.
    Dynia DW, Steinmetz AG, Kocinsky HS, 2010 NHE3 function and phosphorylation are regulated by a calyculin A-sensitive phosphatase. Am J Physiol Renal Physiol 298: F745–F753.PubMedCrossRefGoogle Scholar
  111. 111.
    He P, Lee SJ, Lin S, et al, 2011 Serum- and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids. Mol Biol Cell 22: 3812–3825.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Panchapakesan U, Pollock C, Saad S, 2011 Renal epidermal growth factor receptor: its role in sodium and water homeostasis in diabetic nephropathy. Clin Exp Pharmacol Physiol 38: 84–88.PubMedCrossRefGoogle Scholar
  113. 113.
    Pao AC, Bhargava A, Di Sole F, et al, 2010 Expression and role of serum and glucocorticoid-regulated kinase 2 in the regulation of Na+/H+ exchanger 3 in the mammalian kidney. Am J Physiol Renal Physiol 299: F1496–F1506.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rexhepaj R, Alesutan I, Gu S, et al, 2011 SGK1-dependent stimulation of intestinal SGLT1 activity by vitamin D. Pflugers Arch 462: 489–494.PubMedCrossRefGoogle Scholar
  115. 115.
    Bohmer C, Sopjani M, Klaus F, et al, 2010 The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19. Cell Physiol Biochem 25: 723–732.PubMedCrossRefGoogle Scholar
  116. 116.
    Gehring EM, Zurn A, Klaus F, et al, 2009 Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24: 361–368.PubMedCrossRefGoogle Scholar
  117. 117.
    Klaus F, Gehring EM, Zurn A, et al, 2009 Regulation of the Na(+)-coupled glutamate transporter EAAT3 by PIKfyve. Neurochem Int 54: 372–377.PubMedCrossRefGoogle Scholar
  118. 118.
    Alesutan IS, Ureche ON, Laufer J, et al, 2010 Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 25: 187–194.PubMedCrossRefGoogle Scholar
  119. 119.
    Rexhepaj R, Rotte A, Kempe DS, et al, 2009 Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone. Pflugers Arch 459: 191–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Rexhepaj R, Rotte A, Pasham V, et al, 2010 PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport. Cell Physiol Biochem 25: 715–722.PubMedCrossRefGoogle Scholar
  121. 121.
    Andrukhova O, Zeitz U, Goetz R, et al, 2012 FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51: 621–628.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hryciw DH, Kruger WA, Briffa JF, et al, 2012 SGK-1 is a positive regulator of constitutive albumin uptake in renal proximal tubule cells. Cell Physiol Biochem 30: 1215–1226.PubMedCrossRefGoogle Scholar
  123. 123.
    Slattery C, Jenkin KA, Lee A, et al, 2011 Na+-H+ exchanger regulatory factor 1 (NHERF1) PDZ scaffold binds an internal binding site in the scavenger receptor megalin. Cell Physiol Biochem 27: 171–178.PubMedCrossRefGoogle Scholar
  124. 124.
    Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K, 2011 Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol 15: 688–693.PubMedCrossRefGoogle Scholar
  125. 125.
    Schmid E, Gu S, Yang W, et al, 2013 Serum- and glucocorticoid-inducible kinase (SGK) 1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation. Am J Physiol Cell Physiol 304: C49–C55.PubMedCrossRefGoogle Scholar
  126. 126.
    Chen L, Wei TQ, Wang Y, et al, 2012 Simulated bladder pressure stimulates human bladder smooth muscle cell proliferation via the PI3K/SGK1 signaling pathway. J Urol 188: 661–667.PubMedCrossRefGoogle Scholar
  127. 127.
    Amato R, Menniti M, Agosti V, et al, 2007 IL-2 signals through SGK1 and inhibits proliferation and apoptosis in kidney cancer cells. J Mol Med 85: 707–721.PubMedCrossRefGoogle Scholar
  128. 128.
    Schmidt EM, Kraemer BF, Borst O, et al, 2012 SGK1 sensitivity of platelet migration. Cell Physiol Biochem 30: 259–268.PubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt EM, Gu S, Anagnostopoulou V, et al, 2012 Serum- and glucocorticoid-dependent kinase-1-induced cell migration is dependent on vinculin and regulated by the membrane androgen receptor. FEBS J 279: 1231–1242.PubMedCrossRefGoogle Scholar
  130. 130.
    Faresse N, Lagnaz D, Debonneville A, et al, 2012 Inducible kidney-specific SGK1 knockout mice show a salt-losing phenotype. Am J Physiol Renal Physiol 302: F977–F985.PubMedCrossRefGoogle Scholar
  131. 131.
    Lang F, Vallon V, 2012 Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 16: 73–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Rotte A, Bhandaru M, Ackermann TF, Boini KM, Lang F, 2008 Role of PDK1 in regulation of gastric acid secretion. Cell Physiol Biochem 22: 725–734.PubMedCrossRefGoogle Scholar
  133. 133.
    Rotte A, Mack AF, Bhandaru M, et al, 2009 Pioglitazone induced gastric acid secretion. Cell Physiol Biochem 24: 193–200.PubMedCrossRefGoogle Scholar
  134. 134.
    Hua SZ, 2013 Mapped! A machinery of degranulation in mast cells. Focus on “Serum- and glucocorticoid-inducible kinase SGK1 regulates reorganization of actin cytoskeleton in mast cells upon degranulation”. Am J Physiol Cell Physiol 304: C36–C37.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Peng HY, Chen GD, Lai CY, Hsieh MC, Lin TB, 2013 Spinal serum-inducible and glucocorticoid-inducible kinase 1 mediates neuropathic pain via kalirin and downstream PSD-95-dependent NR2B phosphorylation in rats. J Neurosci 33: 5227–5240.PubMedCrossRefGoogle Scholar
  136. 136.
    Andres-Mateos E, Brinkmeier H, Burks TN, et al, 2013 Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 5: 80–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Alamares-Sapuay JG, Martinez-Gil L, Stertz S, et al, 2013 Serum- and glucocorticoid-regulated kinase 1 is required for nuclear export of the ribonucleoprotein of influenza a virus. J Virol 87: 6020–6026.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Artunc F, Ebrahim A, Siraskar B, et al, 2009 Responses to diuretic treatment in gene-targeted mice lacking serum- and glucocorticoid-inducible kinase 1. Kidney Blood Press Res 32: 119–127.PubMedCrossRefGoogle Scholar
  139. 139.
    Bhandaru M, Kempe DS, Rotte A, et al, 2009 Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC. Am J Physiol Regul Integr Comp Physiol 297: R571–R575.PubMedCrossRefGoogle Scholar
  140. 140.
    Lang F, Cohen P, 2001 Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Sci STKE 2001: RE17.PubMedGoogle Scholar
  141. 141.
    Resch M, Bergler T, Fredersdorf S, et al, 2010 Hyperaldosteronism and altered expression of an SGK1-dependent sodium transporter in ZDF rats leads to salt dependence of blood pressure. Hypertens Res 33: 1082–1088.PubMedCrossRefGoogle Scholar
  142. 142.
    Umbach AT, Pathare G, Foller M, et al, 2011 SGK1-dependent salt appetite in pregnant mice. Acta Physiol (Oxf) 202: 39–45.CrossRefGoogle Scholar
  143. 143.
    Shanmugam I, Cheng G, Terranova PF, et al, 2007 Serum/glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival. Cell Death Differ 14: 2085–2094.PubMedCrossRefGoogle Scholar
  144. 144.
    Kawarazaki H, Ando K, Shibata S, et al, 2012 Mineralocorticoid receptor—Rac1 activation and oxidative stress play major roles in salt-induced hypertension and kidney injury in prepubertal rats. J Hypertens 30: 1977–1985.PubMedCrossRefGoogle Scholar
  145. 145.
    Nakagaki T, Hirooka Y, Matsukawa R, et al, 2012 Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res 35: 470–476.PubMedCrossRefGoogle Scholar
  146. 146.
    Rao AD, Sun B, Saxena A, et al, 2013 Polymorphisms in the serum- and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J Hum Hypertens 27: 176–180.PubMedCrossRefGoogle Scholar
  147. 147.
    Nakano M, Hirooka Y, Matsukawa R, Ito K, Sunagawa K, 2013 Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res 36: 277–284.PubMedCrossRefGoogle Scholar
  148. 148.
    Ackermann TF, Boini KM, Beier N, et al, 2011 EMD638683, a novel SGK inhibitor with antihypertensive potency. Cell Physiol Biochem 28: 137–146.PubMedCrossRefGoogle Scholar
  149. 149.
    DiPietro N, Panel V, Hayes S, et al, 2010 Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates adipocyte differentiation via forkhead box O1. Mol Endocrinol 24: 370–380.PubMedCrossRefGoogle Scholar
  150. 150.
    Dahlberg J, Smith G, Norrving B, et al, 2011 Genetic variants in serum and glucocortocoid regulated kinase 1, a regulator of the epithelial sodium channel, are associated with ischaemic stroke. J Hypertens 29: 884–889.PubMedCrossRefGoogle Scholar
  151. 151.
    Kleinewietfeld M, Manzel A, Titze J, et al, 2013 Sodium chloride drives autoimmune disease by the induction of pathogenic T17 cells. Nature 496: 518–522.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wang HR, Chen DL, Zhao M, et al, 2012 C-reactive protein induces interleukin-6 and thrombospondin-1 protein and mRNA expression through activation of nuclear factor-kB in HK-2 cells. Kidney Blood Press Res 35: 211–219.PubMedCrossRefGoogle Scholar
  153. 153.
    Roos M, Heinemann FM, Lindemann M, et al, 2011 Fetuin-A pretransplant serum levels, kidney allograft function and rejection episodes: a 3-year posttransplantation follow-up. Kidney Blood Press Res 34: 328–333.PubMedCrossRefGoogle Scholar
  154. 154.
    Rassler B, Marx G, Schierle K, Zimmer HG, 2012 Catecholamines can induce pulmonary remodeling in rats. Cell Physiol Biochem 30: 1134–1147.PubMedCrossRefGoogle Scholar
  155. 155.
    Li W, Cui M, Wei Y, et al, 2012 Inhibition of the expression of TGF-beta1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem 30: 749–757.PubMedCrossRefGoogle Scholar
  156. 156.
    Chen H, Zhou Y, Chen KQ, et al, 2012 Anti-fibrotic effects via regulation of transcription factor Sp1 on hepatic stellate cells. Cell Physiol Biochem 29: 51–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Akhurst RJ, Hata A, 2012 Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11: 790–811.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    MacDonald EM, Cohn RD, 2012 TGFbeta signaling: its role in fibrosis formation and myopathies. Curr Opin Rheumatol 24: 628–634.PubMedCrossRefGoogle Scholar
  159. 159.
    Gao S, Alarcon C, Sapkota G, et al, 2009 Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 36: 457–468.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Cheng J, Truong LD, Wu X, et al, 2010 Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 78: 668–678.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Okazaki A, Mori Y, Nakata M, et al, 2009 Peritoneal mesothelial cells as a target of local aldosterone action: upregulation of connective tissue growth factor expression via serum- and glucocorticoid-inducible protein kinase 1. Kidney Blood Press Res 32: 151–160.PubMedCrossRefGoogle Scholar
  162. 162.
    Szebeni B, Vannay A, Sziksz E, et al, 2010 Increased expression of serum- and glucocorticoid-regulated kinase-1 in the duodenal mucosa of children with coeliac disease. J Pediatr Gastroenterol Nutr 50: 147–153.PubMedCrossRefGoogle Scholar
  163. 163.
    Yamahara H, Kishimoto N, Nakata M, et al, 2009 Direct aldosterone action as a profibrotic factor via ROS-mediated SGK1 in peritoneal fibroblasts. Kidney Blood Press Res 32: 185–193.PubMedCrossRefGoogle Scholar
  164. 164.
    Britt RD, Jr., Locy ML, Tipple TE, Nelin LD, Rogers LK, 2012 Lipopolysaccharide-induced cyclooxygenase-2 expression in mouse transformed Clara cells. Cell Physiol Biochem 29: 213–222.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Badr G, Waly H, Eldien HM, et al, 2010 Blocking type I interferon (IFN) signaling impairs antigen responsiveness of circulating lymphocytes and alters their homing to lymphoid organs: protective role of type I IFN. Cell Physiol Biochem 26: 1029–1040.PubMedCrossRefGoogle Scholar
  166. 166.
    O’Donnell MA, Ting AT, 2012 NFkappaB and ubiquitination: partners in disarming RIPK1-mediated cell death. Immunol Res 54: 214–226.PubMedCrossRefGoogle Scholar
  167. 167.
    Shen HM, Tergaonkar V, 2009 NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis 14: 348–363.PubMedCrossRefGoogle Scholar
  168. 168.
    Ghashghaeinia M, Toulany M, Saki M, et al, 2011 The NFkB pathway inhibitors Bay 11-7082 and parthenolide induce programmed cell death in anucleated Erythrocytes. Cell Physiol Biochem 27: 45–54.PubMedCrossRefGoogle Scholar
  169. 169.
    Okazaki I, Watanabe T, Hozawa S, Arai M, Maruyama K, 2000 Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases. J Gastroenterol Hepatol 15 Suppl: D26–D32.PubMedCrossRefGoogle Scholar
  170. 170.
    Shih VF, Tsui R, Caldwell A, Hoffmann A, 2011 A single NFkappaB system for both canonical and non-canonical signaling. Cell Res 21: 86–102.PubMedCrossRefGoogle Scholar
  171. 171.
    Stone KP, Kastin AJ, Pan W, 2011 NFkB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia. Cell Physiol Biochem 28: 115–124.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Vallon V, Wyatt AW, Klingel K, et al, 2006 SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J Mol Med (Berl) 84: 396–404.CrossRefGoogle Scholar
  173. 173.
    Feng Y, Wang Q, Wang Y, Yard B, Lang F, 2005 SGK1-mediated fibronectin formation in diabetic nephropathy. Cell Physiol Biochem 16: 237–244.PubMedCrossRefGoogle Scholar
  174. 174.
    Chilukoti RK, Mostertz J, Bukowska A, et al, 2013 Effects of irbesartan on gene expression revealed by transcriptome analysis of left atrial tissue in a porcine model of acute rapid pacing in vivo. Int J Cardiol. [Epud ahead of print]Google Scholar
  175. 175.
    Yang M, Zheng J, Miao Y, et al, 2012 Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arterioscler Thromb Vasc Biol 32: 1675–1686.PubMedCrossRefGoogle Scholar
  176. 176.
    Das S, Aiba T, Rosenberg M, et al, 2012 Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. Circulation 126: 2208–2219.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE, 2006 Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 70: 555–565.PubMedCrossRefGoogle Scholar
  178. 178.
    Fagerli UM, Ullrich K, Stuhmer T, et al, 2011 Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells. Oncogene 30: 3198–3206.PubMedCrossRefGoogle Scholar
  179. 179.
    Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D, 2009 Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer 124: 109–119.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Szmulewitz RZ, Chung E, Al Ahmadie H, et al, 2012 Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. Prostate 72: 157–164.PubMedCrossRefGoogle Scholar
  181. 181.
    Abbruzzese C, Mattarocci S, Pizzuti L, et al, 2012 Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. J Exp Clin Cancer Res 31: 4.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Zhang L, Cui R, Cheng X, Du J, 2005 Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I{kappa}B kinase. Cancer Res 65: 457–464.PubMedGoogle Scholar
  183. 183.
    Baskin R, Sayeski PP, 2012 Angiotensin II mediates cell survival through upregulation and activation of the serum and glucocorticoid inducible kinase 1. Cell Signal 24: 435–442.PubMedCrossRefGoogle Scholar
  184. 184.
    Zou JX, Guo L, Revenko AS, et al, 2009 Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res 69: 3339–3346.PubMedCrossRefGoogle Scholar
  185. 185.
    Sommer EM, Dry H, Cross D, et al, 2013 Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochem J 452: 499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Gu S, Papadopoulou N, Gehring EM, et al, 2009 Functional membrane androgen receptors in colon tumors trigger pro-apoptotic responses in vitro and reduce drastically tumor incidence in vivo. Mol Cancer 8: 114.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Papadopoulou N, Charalampopoulos I, Anagnostopoulou V, et al, 2008 Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells. Mol Cancer 7: 88.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Papadopoulou N, Papakonstanti EA, Kallergi G, Alevizopoulos K, Stournaras C, 2009 Membrane androgen receptor activation in prostate and breast tumor cells: molecular signaling and clinical impact. IUBMB Life 61: 56–61.PubMedCrossRefGoogle Scholar
  189. 189.
    Gu S, Papadopoulou N, Nasir O, et al, 2011 Activation of membrane androgen receptors in colon cancer inhibits the prosurvival signals Akt/bad in vitro and in vivo and blocks migration via vinculin/actin signaling. Mol Med 17: 48–58.PubMedCrossRefGoogle Scholar
  190. 190.
    Amato R, Scumaci D, D’Antona L, et al, 2012 SGK1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. OncogeneGoogle Scholar
  191. 191.
    Boiteux A, Hess B, 1981 Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 293: 5–22.PubMedCrossRefGoogle Scholar
  192. 192.
    Ronchi CL, Sbiera S, Leich E, et al, 2012 Low SGK1 expression in human adrenocortical tumors is associated with ACTH-independent glucocorticoid secretion and poor prognosis. J Clin Endocrinol Metab 97: E2251–2260.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Ronchi CL, Leich E, Sbiera S, et al, 2012 Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways. Neoplasia 14: 206–218.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Segditsas S, Sieber O, Deheragoda M, et al, 2008 Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet 17: 3864–3875.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Nasir O, Wang K, Foller M, et al, 2009 Relative resistance of SGK1 knockout mice against chemical carcinogenesis. IUBMB Life 61: 768–776.PubMedCrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2013

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of TübingenTübingenGermany
  2. 2.Department of BiochemistryUniversity of Crete, School of MedicineHeraklion, CreteGreece

Personalised recommendations