Skip to main content

Advertisement

Log in

Disease-Modifying Antirheumatic Drugs and Dementia Prevention: A Systematic Review of Observational Evidence in Rheumatoid Arthritis

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Many observational studies have examined the association of disease-modifying antirheumatic drugs (DMARDs) with dementia risk, but the evidence has been mixed, possibly due to methodological reasons. This systematic review (PROSPERO: CRD42023432122) aims to assess existing observational evidence and to suggest if repurposing DMARDs for dementia prevention merits further investigation.

Methods

Four electronic databases up to October 26, 2023, were searched. Cohort or case-control studies that examined dementia risk associated with DMARDs in people with rheumatoid arthritis were included. Risk of bias was evaluated using the Cochrane Collaboration’s Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) criteria. Findings were summarized by individual drug classes and by risk of bias.

Results

Of 12,180 unique records, 14 studies (4 case-control studies, 10 cohort studies) were included. According to the ROBINS-I criteria, there were 2 studies with low risk of bias, 1 study with moderate risk, and 11 studies with serious or critical risk. Among studies with low risk of bias, one study suggested that hydroxychloroquine versus methotrexate was associated with lower incident dementia, and the other study showed no associations of tumor necrosis factor (TNF) inhibitors, tocilizumab, and tofacitinib, compared to abatacept, with incident dementia.

Conclusion

Studies that adequately addressed important biases were limited. Studies with low risk of bias did not support repurposing TNF inhibitors, tocilizumab, abatacept or tofacitinib for dementia prevention, but hydroxychloroquine may be a potential candidate. Further studies that carefully mitigate important sources of biases are warranted, and long-term evidence will be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930–941. doi:https://doi.org/10.1016/j.biopsych.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  2. Lai KSP, Liu CS, Rau A, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88(10):876–882. doi:https://doi.org/10.1136/jnnp-2017-316201

    Article  PubMed  Google Scholar 

  3. Darweesh SKL, Wolters FJ, Ikram MA, de Wolf F, Bos D, Hofman A. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta-analysis. Alzheimers Dement. 2018;14(11):1450–1459. doi:https://doi.org/10.1016/j.jalz.2018.02.014

    Article  PubMed  Google Scholar 

  4. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–442. doi:https://doi.org/10.1038/nri2094

    Article  CAS  PubMed  Google Scholar 

  5. Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2021;73(7):924–939. doi:https://doi.org/10.1002/acr.24596

    Article  PubMed  Google Scholar 

  6. Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16(12):661–673. doi:https://doi.org/10.1038/s41582-020-0397-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henry DS, Pellegrino RG. A case-control study of phosphodiesterase-5 inhibitor use and Alzheimer’s disease and related dementias among male and female patients aged 65 years and older supporting the need for a phase III clinical trial. PLoS One. 2023;18(10):e0292863. doi:https://doi.org/10.1371/journal.pone.0292863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang J, Zhang P, Zhou Y, et al. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nat aging. 2021;1(12):1175–1188. doi:https://doi.org/10.1038/s43587-021-00138-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adesuyan M, Jani YH, Alsugeir D, et al. Phosphodiesterase Type 5 Inhibitors in Men With Erectile Dysfunction and the Risk of Alzheimer Disease: A Cohort Study. Neurology. 2024;102(4):e209131. doi:https://doi.org/10.1212/WNL.0000000000209131

    Article  PubMed  PubMed Central  Google Scholar 

  10. Desai RJ, Mahesri M, Lee SB, et al. No association between initiation of phosphodiesterase-5 inhibitors and risk of incident Alzheimer’s disease and related dementia: results from the Drug Repurposing for Effective Alzheimer’s Medicines study. Brain Commun. 2022;4(5):fcac247. doi:https://doi.org/10.1093/braincomms/fcac247

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zheng B, Su B, Ahmadi-Abhari S, et al. Dementia risk in patients with type 2 diabetes: Comparing metformin with no pharmacological treatment. Alzheimers Dement. July 2023. doi:https://doi.org/10.1002/alz.13349

  12. Shi Q, Liu S, Fonseca VA, Thethi TK, Shi L. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open. 2019;9(7):e024954. doi:https://doi.org/10.1136/bmjopen-2018-024954

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tseng C-H. Metformin and the Risk of Dementia in Type 2 Diabetes Patients. Aging Dis. 2019;10(1):37–48. doi:https://doi.org/10.14336/AD.2017.1202

    Article  Google Scholar 

  14. Wu C-Y, Wang C, Saskin R, et al. No association between metformin initiation and incident dementia in older adults newly diagnosed with diabetes. J Intern Med. September 2023. doi:https://doi.org/10.1111/joim.13723

  15. Salas J, Morley JE, Scherrer JF, et al. Risk of incident dementia following metformin initiation compared with noninitiation or delay of antidiabetic medication therapy. Pharmacoepidemiol Drug Saf. 2020;29(6):623–634. doi:https://doi.org/10.1002/pds.5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moola S, Munn Z, Sears K, et al. Conducting systematic reviews of association (etiology): The Joanna Briggs Institute’s approach. Int J Evid Based Healthc. 2015;13(3):163–169. doi:https://doi.org/10.1097/XEB.0000000000000064

    Article  PubMed  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  18. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40–46. doi:https://doi.org/10.1016/j.jclinepi.2016.01.021

    Article  PubMed  Google Scholar 

  19. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi:https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tamim H, Monfared AAT, LeLorier J. Application of lag-time into exposure definitions to control for protopathic bias. Pharmacoepidemiol Drug Saf. 2007;16(3):250–258. doi:https://doi.org/10.1002/pds.1360

    Article  CAS  PubMed  Google Scholar 

  21. Bradford A, Kunik ME, Schulz P, Williams SP, Singh H. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis Assoc Disord. 2009;23(4):306–314. doi:https://doi.org/10.1097/WAD.0b013e3181a6bebc

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lévesque LE, Hanley JA, Kezouh A, Suissa S. Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ. 2010;340:b5087. doi:https://doi.org/10.1136/bmj.b5087

    Article  PubMed  Google Scholar 

  23. Suissa S. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol. 2008;167(4):492–499. doi:https://doi.org/10.1093/aje/kwm324

    Article  PubMed  Google Scholar 

  24. Suissa S, Dell’aniello S, Vahey S, Renoux C. Time-window bias in case-control studies: statins and lung cancer. Epidemiology. 2011;22(2):228–231. doi:https://doi.org/10.1097/EDE.0b013e3182093a0f

    Article  PubMed  Google Scholar 

  25. Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003;158(9):915–920. doi:https://doi.org/10.1093/aje/kwg231

    Article  PubMed  Google Scholar 

  26. Wu C-Y, Swardfager W. Disease latency and new-user vs. prevalent-user cohort designs; implications for pharmacoepidemiology in dementia. J Am Geriatr Soc. 2023. doi:https://doi.org/10.1111/jgs.18714

  27. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20(4):488–495. doi:https://doi.org/10.1097/EDE.0b013e3181a819a1

    Article  PubMed  PubMed Central  Google Scholar 

  28. R Core Team. R: A Language and Environment for Statistical Computing. 2021. https://www.r-project.org/.

  29. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–394. doi:https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  30. Judge A, Garriga C, Arden NK, et al. Protective effect of antirheumatic drugs on dementia in rheumatoid arthritis patients. Alzheimer’s Dement (New York, N Y). 2017;3(4):612–621. doi:https://doi.org/10.1016/j.trci.2017.10.002

    Google Scholar 

  31. Sattui SE, Rajan M, Lieber SB, et al. Association of cardiovascular disease and traditional cardiovascular risk factors with the incidence of dementia among patients with rheumatoid arthritis. Semin Arthritis Rheum. 2021;51(1):292–298. doi:https://doi.org/10.1016/j.semarthrit.2020.09.022

    Article  PubMed  PubMed Central  Google Scholar 

  32. Desai RJ, Varma VR, Gerhard T, et al. Comparative Risk of Alzheimer Disease and Related Dementia Among Medicare Beneficiaries With Rheumatoid Arthritis Treated With Targeted Disease-Modifying Antirheumatic Agents. JAMA Netw open. 2022;5(4):e226567. doi:https://doi.org/10.1001/jamanetworkopen.2022.6567

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kern DM, Lovestone S, Cepeda MS. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer’s disease. Alzheimer’s Dement (New York, N Y). 2021;7(1):e12163. doi:https://doi.org/10.1002/trc2.12163

    Google Scholar 

  34. Zheng C, Fillmore NR, Ramos-Cejudo J, et al. Potential long-term effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimers Dement. 2022;18(6):1248–1259. doi:https://doi.org/10.1002/alz.12465

    Article  CAS  PubMed  Google Scholar 

  35. Zhou M, Xu R, Kaelber DC, Gurney ME. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS One. 2020;15(3):e0229819. doi:https://doi.org/10.1371/journal.pone.0229819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chou M-H, Wang J-Y, Lin C-L, Chung W-S. DMARD use is associated with a higher risk of dementia in patients with rheumatoid arthritis: A propensity score-matched case-control study. Toxicol Appl Pharmacol. 2017;334:217–222. doi:https://doi.org/10.1016/j.taap.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  37. Sattui SE, Navarro-Millan I, Xie F, Rajan M, Yun H, Curtis JR. Incidence of dementia in patients with rheumatoid arthritis and association with disease modifying anti-rheumatic drugs - Analysis of a national claims database. Semin Arthritis Rheum. 2022;57:152083. doi:https://doi.org/10.1016/j.semarthrit.2022.152083

    Article  CAS  PubMed  Google Scholar 

  38. Huang L-C, Chang Y-H, Yang Y-H. Can Disease-Modifying Anti-Rheumatic Drugs Reduce the Risk of Developing Dementia in Patients with Rheumatoid Arthritis? Neurother J Am Soc Exp Neurother. 2019;16(3):703–709. doi:https://doi.org/10.1007/s13311-019-00715-6

    CAS  Google Scholar 

  39. Kodishala C, Hulshizer CA, Kronzer VL, et al. Risk Factors for Dementia in Patients With Incident Rheumatoid Arthritis: A Population-Based Cohort Study. J Rheumatol. 2023;50(1):48–55. doi:https://doi.org/10.3899/jrheum.220200

    Article  PubMed  Google Scholar 

  40. Newby D, Prieto-Alhambra D, Duarte-Salles T, et al. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: a multinational multi-database case-control study. Alzheimers Res Ther. 2020;12(1):38. doi:https://doi.org/10.1186/s13195-020-00606-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fardet L, Nazareth I, Petersen I. Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimer’s disease: a population-based cohort study. Ann Rheum Dis. 2019;78(2):279–282. doi:https://doi.org/10.1136/annrheumdis-2018-214016

    Article  CAS  PubMed  Google Scholar 

  42. Varma VR, Desai RJ, Navakkode S, et al. Hydroxychloroquine lowers Alzheimer’s disease and related dementias risk and rescues molecular phenotypes related to Alzheimer’s disease. Mol Psychiatry. 2023;28(3):1312–1326. doi:https://doi.org/10.1038/s41380-022-01912-0

    Article  CAS  PubMed  Google Scholar 

  43. Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for Rheumatoid Arthritis and Risk of Alzheimer’s Disease: A Nested Case-Control Analysis. CNS Drugs. 2016;30(11):1111–1120. doi:https://doi.org/10.1007/s40263-016-0374-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Desai RJ, Varma VR, Gerhard T, et al. Targeting abnormal metabolism in Alzheimer’s disease: The Drug Repurposing for Effective Alzheimer’s Medicines (DREAM) study. Alzheimer’s Dement (New York, N Y). 2020;6(1):e12095. doi:https://doi.org/10.1002/trc2.12095

    Google Scholar 

  45. Lund JL, Richardson DB, Stürmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol reports. 2015;2(4):221–228. doi:https://doi.org/10.1007/s40471-015-0053-5

    Article  Google Scholar 

  46. Yoshida K, Solomon DH, Kim SC. Active-comparator design and new-user design in observational studies. Nat Rev Rheumatol. 2015;11(7):437–441. doi:https://doi.org/10.1038/nrrheum.2015.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sendor R, Stürmer T. Core concepts in pharmacoepidemiology: Confounding by indication and the role of active comparators. Pharmacoepidemiol Drug Saf. 2022;31(3):261–269. doi:https://doi.org/10.1002/pds.5407

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lund JL, Horváth-Puhó E, Komjáthiné Szépligeti S, et al. Conditioning on future exposure to define study cohorts can induce bias: the case of low-dose acetylsalicylic acid and risk of major bleeding. Clin Epidemiol. 2017;9:611–626. doi:https://doi.org/10.2147/CLEP.S147175

    Article  PubMed  PubMed Central  Google Scholar 

  49. Williamson T, Ravani P. Marginal structural models in clinical research: when and how to use them? Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2017;32(suppl_2):ii84–ii90. doi:https://doi.org/10.1093/ndt/gfw341

    Google Scholar 

  50. Shrank WH, Patrick AR, Brookhart MA. Healthy user and related biases in observational studies of preventive interventions: a primer for physicians. J Gen Intern Med. 2011;26(5):546–550. doi:https://doi.org/10.1007/s11606-010-1609-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Van Gool WA, Weinstein HC, Scheltens P, Walstra GJ. Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet (London, England). 2001;358(9280):455–460. doi:https://doi.org/10.1016/s0140-6736(01)05623-9

    Article  CAS  PubMed  Google Scholar 

  52. Dautzenberg L, Jessurum N, Dautzenberg PLJ, Keijsers CJPW. Reversible Methotrexate-Induced Dementia: A Case Report. J Am Geriatr Soc. 2015;63(6):1273–1274. doi:https://doi.org/10.1111/jgs.13517

    Article  PubMed  Google Scholar 

  53. Butchart J, Brook L, Hopkins V, et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161–2168. doi:https://doi.org/10.1212/WNL.0000000000001617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang R, Knox J, Chang J, et al. Blood-Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer’s Disease. Mol Pharm. 2017;14(7):2340–2349. doi:https://doi.org/10.1021/acs.molpharmaceut.7b00200

    Article  CAS  PubMed  Google Scholar 

  55. Zhou QH, Sumbria R, Hui EK, Lu JZ, Boado RJ, Pardridge WM. Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. J Pharmacol Exp Ther. 2011;339(2):618–623. doi:https://doi.org/10.1124/jpet.111.185876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol. 2021;17(11):689–701. doi:https://doi.org/10.1038/s41582-021-00549-x

    Article  PubMed  PubMed Central  Google Scholar 

  57. Suissa S, Moodie EEM, Dell’Aniello S. Prevalent new-user cohort designs for comparative drug effect studies by time-conditional propensity scores. Pharmacoepidemiol Drug Saf. 2017;26(4):459–468. doi:https://doi.org/10.1002/pds.4107

    Article  CAS  PubMed  Google Scholar 

  58. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155–166. doi:https://doi.org/10.1038/s41584-020-0372-x

    Article  CAS  PubMed  Google Scholar 

  59. Hu J, Wang X, Chen X, et al. Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway. J Neuroinflammation. 2022;19(1):71. doi:https://doi.org/10.1186/s12974-022-02430-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krance SH, Wu C-Y, Chan ACY, et al. Endosomal-Lysosomal and Autophagy Pathway in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2022;88(4):1279–1292. doi:https://doi.org/10.3233/JAD-220360

    Article  CAS  PubMed  Google Scholar 

  61. Jack CRJ, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–547. doi:https://doi.org/10.1212/WNL.0000000000002923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Patricia Ayala for their PRESS-peer review of the Ovid Medline search strategy.

Funding

Funding Sources: Che-Yuan Wu gratefully acknowledges financial support from the Canadian Institutes of Health Research (Doctoral Research Award: Canadian Graduate Scholarships; 202111FBD-47623-75801). Lisa Y Xiong gratefully acknowledges support from the Canadian Institutes of Health Research (Doctoral Research Award: Canadian Graduate Scholarships; 202111FBD-476226). Walter Swardfager gratefully acknowledges financial support from the Alzheimer’s Drug Discovery Foundation, Canada Research Chairs Program (Award Number: CRC-2020-00353) and Ontario Ministry of Colleges and Universities (Award Number: ER21-16-141).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Che-Yuan Wu and Walter Swardfager conceptualized the project. Che-Yuan Wu and Glyneva Bradley-Ridout had significant contributions to methodology. Glyneva Bradley-Ridout conducted literature search in electronic databases. Che-Yuan Wu, Lisa Xiong, Yuen Yan Wong, Shiropa Noor, Walter Swardfager were involved in the investigation process. Che-Yuan Wu, Lisa Xiong, and Walter Swardfager drafted the manuscript. All authors had inputs into the review/editing of the manuscript.

Corresponding author

Correspondence to Walter Swardfager.

Ethics declarations

Conflict of Interest: The funders did not participate in the conduct or reporting of the study. The authors declare no conflict of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CY., Xiong, L.Y., Wong, Y.Y. et al. Disease-Modifying Antirheumatic Drugs and Dementia Prevention: A Systematic Review of Observational Evidence in Rheumatoid Arthritis. J Prev Alzheimers Dis (2024). https://doi.org/10.14283/jpad.2024.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.14283/jpad.2024.78

Key words

Navigation