Skip to main content
Log in

The Insulin Sensitizer KBP-336 Prevents Diabetes-Induced Cognitive decline in ZDF Rats

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background and Objectives

Diabetes and especially insulin resistance are associated with an increased risk of developing cognitive dysfunction, making anti-diabetic drugs an interesting therapeutic option for the treatment of neurodegenerative disorders. Dual amylin and calcitonin receptor agonists (DACRAs) elicit beneficial effects on glycemic control and insulin sensitivity. However, whether DACRAs affect cognition is unknown.

Design and Intervention

Zucker Diabetic Fatty rats were treated with either the DACRA KBP-336 (4.5 nmol/kg Q3D), the amylin analog AM1213 (25 nmol/kg QD), or vehicle for 18 weeks. Further, the efficacy of a late KBP-336 intervention was evaluated by including a group starting treatment on day 30. Glucose control and tolerance were evaluated throughout the study and spatial learning and memory were evaluated by Morris Water Maze after 17 weeks of treatment.

Results

When evaluating spatial learning, rats receiving KBP-336 throughout the study performed significantly better than AM1213, vehicle, and late intervention KBP-336. Both KBP-336 and AM1213 treatments improved spatial memory compared to the vehicle. The overall performance in the cognitive tests was reflected in the treatment efficacy on glycemic control, where KBP-336 was superior to AM1213.

Conclusion

In summary, the DACRA KBP-336 ameliorates diabetes-induced spatial learning and memory impairment in diabetic rats. Further, KBP-336 improves long-term glycemic control superior to the amylin analog AM1213. Taken together, KBP-336 is, due to its anti-diabetic and insulin-sensitizing properties, a promising candidate for the treatment of cognitive impairments.

Graphical abstract. created with BioRender.com

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Availability of data: The data supporting the findings of this manuscript are available from the corresponding author upon reasonable request.

Abbreviations

DACRA:

Dual amylin and calcitonin receptor agonist

GLP-1:

Glucagon-like peptide 1

KBP:

KeyBioscience Peptide

OGTT:

Oral glucose tolerance test

PPARγ:

Peroxisome proliferator-activated receptor gamma

SGLT2:

Sodium-glucose co-transporter 2

ZDF:

Zucker diabetic Fatty

References

  1. Kosiborod M, Gomes MB, Nicolucci A, Pocock S, Rathmann W, Shestakova M V., et al. Vascular complications in patients with type 2 diabetes: Prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc Diabetol [Internet]. 2018;17(1):1–13. Available from: https://doi.org/10.1186/s12933-018-0787-8

    Google Scholar 

  2. Katon W, Pedersen HS, Ribe AR, Fenger-Grøn M, Davydow D, Waldorff FB, et al. Impact of Depression and Diabetes on Risk of Dementia In a National Population-Based Cohort. JAMA Psychiatry [Internet]. 2015;72(6):612–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666533/pdf/nihms739510.pdf

    Article  PubMed  Google Scholar 

  3. Santiago JA, Karthikeyan M, Lackey M, Villavicencio D, Potashkin JA. Diabetes: a tipping point in neurodegenerative diseases. Trends Mol Med [Internet]. 2023;1–16. Available from: https://doi.org/10.1016/j.molmed.2023.09.005

  4. Razay G, Vreugdenhil A, Wilcock G. The metabolic syndrome and Alzheimer disease. Arch Neurol. 2007;64(1):93–6.

    Article  PubMed  Google Scholar 

  5. Hishikawa N, Fukui Y, Sato K, Kono S, Yamashita T, Ohta Y, et al. Cognitive and affective functions in Alzheimer’s disease patients with metabolic syndrome. Eur J Neurol. 2016;23(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  6. Valussi M, Antonelli M, Donelli D, Firenzuoli F. The link between Alzheimer disease and metabolic syndrome: A mutual relationship and long rigorous investigation. Perspect Med [Internet]. 2023;100451. Available from: https://doi.org/10.1016/j.hermed.2021.100451

  7. Neergaard JS, Dragsbæk K, Christiansen C, Nielsen HB, Brix S, Karsdal MA, et al. Metabolic syndrome, insulin resistance, and cognitive dysfunction: Does your metabolic profile affect your brain? Diabetes. 2017;66(7):1957–63.

    Article  CAS  PubMed  Google Scholar 

  8. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96(4):1169–209.

    Article  CAS  PubMed  Google Scholar 

  9. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koshatwar M, Acharya S, Prasad R, Lohakare T, Wanjari M, Taksande AB. Exploring the Potential of Antidiabetic Agents as Therapeutic Approaches for Alzheimer’s and Parkinson’s Diseases: A Comprehensive Review. Cureus. 2023;15(9):1–12.

    Google Scholar 

  11. Nowell J, Blunt E, Gupta D. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res Rev [Internet]. 2023;101979. Available from: https://doi.org/10.1016/j.arr.2023.101979

  12. Defo AK, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta-analysis. Diabetes, Obes Metab. 2023;(May):1–22.

  13. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the Insulin Sensitizer Metformin in Alzheimer’s Disease: Pilot Data from a Randomized Placebo-Controlled Crossover Study. Alzheimer Dis Assoc Disord. 2017;31(2):107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi Q, Liu S, Fonseca VA, Thethi TK, Shi L. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open. 2019;9(7).

  15. Siao WZ, Lin TK, Huang JY, Tsai CF, Jong GP. The association between sodium-glucose cotransporter 2 inhibitors and incident dementia: A nationwide population-based longitudinal cohort study. Diabetes Vasc Dis Res. 2022;19(2):1–8.

    Google Scholar 

  16. Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, et al. Association of Sodium–Glucose Cotransporter 2 Inhibitors With Time to Dementia: A Population-Based Cohort Study. Diabetes Care. 2023;46(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  17. Chou PS, Ho BL, Yang YH. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J Diabetes Complications [Internet]. 2017;31(6):1053–7. Available from: https://doi.org/10.1016/j.jdiacomp.2017.01.006

    Article  PubMed  Google Scholar 

  18. Edison P, Femminella GD, Ritchie CW, Holmes C, Walker Z, Ridha BH, et al. Evaluation of liraglutide in the treatment of Alzheimer’s disease. Alzheimer’s Dement. 2021;17(S9):26–8.

    Article  Google Scholar 

  19. Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer’s Disease Pathogenesis and Treatment. Curr Neuropharmacol. 2021;20(10):1894–907.

    Google Scholar 

  20. Mietlicki-Baase EG. Amylin in Alzheimer’s disease: Pathological peptide or potential treatment? Neuropharmacology. 2018;176(1):139–48.

    Google Scholar 

  21. Fu W, Patel A, Kimura R, Soudy R, Jhamandas JH. Amylin Receptor: A Potential Therapeutic Target for Alzheimer’s Disease. Trends Mol Med [Internet]. 2017;23(8):709–20. Available from: https://doi.org/10.1016/j.molmed.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab [Internet]. 2020;preprint(November). Available from: https://doi.org/10.1016/j.molmet.2020.101109

  23. Larsen AT, Melander SA, Sonne N, Bredtoft E-M, Mays A-R, Karsdal MA, et al. Dual amylin and calcitonin receptor agonist treatment improves insulin sensitivity and increases muscle-specific glucose uptake independent of weight loss. Biomed Pharmacother. 2023;164(May):1–10.

    Article  Google Scholar 

  24. Larsen AT, Mohamed KE, Sonne N, Bredtoft E, Andersen F, Karsdal MA, et al. Does receptor balance matter ?–Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother. 2022;156(113842):1–13.

    Google Scholar 

  25. Andreassen KV, Larsen AT, Sonne N, Mohamed KE, Karsdal MA, Henriksen K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol Metab [Internet]. 2021;53(June):101282. Available from: https://doi.org/10.1016/j.molmet.2021.101282

    Article  CAS  PubMed  Google Scholar 

  26. Melander SA, Katri A, Karsdal MA, Henriksen K. Improved metabolic efficacy of a dual amylin and calcitonin receptor agonist when combined with semaglutide or empagliflozin. Eur J Pharmacol [Internet]. 2023;938(175397):1–11. Available from: https://doi.org/10.1016/j.ejphar.2022.175397

    Google Scholar 

  27. Larsen AT, Karsdal MA, Henriksen K. Treatment sequencing using the dual amylin and calcitonin receptor agonist KBP-336 and semaglutide results in durable weight loss. Eur J Pharmacol. 2023;954(March):175837.

    Article  Google Scholar 

  28. Larsen AT, Melander SA, Sonne N, Bredtoft E, Al-Rubai M, Karsdal MA, et al. Dual amylin and calcitonin receptor agonist treatment improves insulin sensitivity and increases muscle-specific glucose uptake independent of weight loss. Biomed Pharmacother. 2023;164.

  29. Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging [Internet]. 2014;35(4):793–801. Available from: https://doi.org/10.1016/j.neurobiolaging.2013.10.076

    Article  CAS  PubMed  Google Scholar 

  30. Zhu H, Wang X, Wallack M, Li H, Carreras I, Dedeoglu A, et al. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Mol Psychiatry. 2015;20(2):232–9.

    Article  Google Scholar 

  31. Patrick S, Corrigan R, Grizzanti J, Mey M, Blair J, Pallas M, et al. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer’s disease are associated with oxidative stress regulation mechanisms. J Alzheimer’s Dis. 2019;69(1):157–68.

    Article  CAS  Google Scholar 

  32. Soudy R, Patel A, Fu W, Kaur K, MacTavish D, Westaway D, et al. Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv [Internet]. 2017;3(1):44–56. Available from: https://doi.org/10.1016/j.trci.2016.11.005

    Article  Google Scholar 

  33. Jhamandas JH, Li Z, Westaway D, Yang J, Jassar S, MacTavish D. Actions of β-amyloid protein on human neurons are expressed through the amylin receptor. Am J Pathol. 2011;178(1):140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem [Internet]. 2012;287(22):18820–30. Available from: https://doi.org/10.1074/jbc.M111.331181

    Article  CAS  PubMed  Google Scholar 

  35. Jhamandas JH, MacTavish D. β-Amyloid protein (Aβ) and human amylin regulation of apoptotic genes occurs through the amylin receptor. Apoptosis. 2012;17(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  36. Chiu WC, Ho WC, Liao DL, Lin MH, Chiu CC, Su YP, et al. Progress of diabetic severity and risk of dementia. J Clin Endocrinol Metab. 2015;100(8):2899–908.

    Article  CAS  PubMed  Google Scholar 

  37. Reinke C, Buchmann N, Fink A, Tegeler C, Demuth I, Doblhammer G. Diabetes duration and the risk of dementia: A cohort study based on German health claims data. Age Ageing. 2022;51(1):1–9.

    Article  Google Scholar 

  38. Larsen AT, Sonne N, Andreassen KV, Gehring K, Karsdal MA, Henriksen K. The dual amylin and calcitonin receptor agonist KBP-088 induces weight loss and improves insulin sensitivity superior to chronic amylin therapy. J Pharmacol Exp Ther. 2019;370:35–43.

    Article  CAS  PubMed  Google Scholar 

  39. Gydesen S, Andreassen KV, Hjuler ST, Christensen JM, Karsdal MA, Henriksen K. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am J Physiol Metab. 2016;310(10):E821–7.

    Google Scholar 

  40. Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J Pharmacol Exp Ther. 2020;374(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  41. Khan A, Petropoulos IN, Ponirakis G, Malik RA. Visual complications in diabetes mellitus: beyond retinopathy. Diabet Med. 2016;478–84.

  42. Vilsbøll T, Brock B, Perrild H, Levin K, Lervang HH, Kølendorf K, et al. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med. 2008;25(2):152–6.

    Article  PubMed  Google Scholar 

  43. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    Article  CAS  PubMed  Google Scholar 

  44. Frias JP, Hsia S, Eyde S, Liu R, Ma X, Konig M, et al. Efficacy and safety of oral orforglipron in patients with type 2 diabetes: a multicentre, randomised, dose-response, phase 2 study. Lancet (London, England) [Internet]. 2023;6736(23):1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/37369232

    Google Scholar 

  45. Becerril S, Frühbeck G. Cagrilintide plus semaglutide for obesity management. Lancet. 2021;397(10286):1687–9.

    Article  PubMed  Google Scholar 

  46. Monney M, Jornayvaz FR, Gariani K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. Diabetes Metab [Internet]. 2023;49(5):101470. Available from: https://doi.org/10.1016/j.diabet.2023.101470

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Chen S, Li Z, Zhu R, Jia Z, Ban J, et al. Effect of semaglutide and empagliflozin on cognitive function and hippocampal phosphoproteomic in obese mice. Front Pharmacol. 2023;14(March):1–18.

    Google Scholar 

  48. Chen X, Ma L, Gan K, Pan X, Chen S. Phosphorylated proteomics-based analysis of the effects of semaglutide on hippocampi of high-fat diet-induced-obese mice. Diabetol Metab Syndr [Internet]. 2023;15(1):1–15. Available from: https://doi.org/10.1186/s13098-023-01023-y

    Google Scholar 

  49. Guo X, Lei M, Zhao J, Wu M, Ren Z, Yang X, et al. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front Pharmacol. 2023;14(August):1–14.

    Article  Google Scholar 

  50. Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight. 2020;5(6):1–18.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Christina Hansen and Majbrith Sprankel for their technical assistance.

Funding

Funding: We acknowledge the Innovation Fund Denmark for the funding.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions: ATL designed the study, performed the experiments, analyzed and interpreted the data, and wrote the manuscript. KEM performed some experiments, assisted with data analysis and interpretation, and manuscript preparation. EAP assisted with some experiments and data analysis. KH and MAK assisted with data analysis and manuscript preparation. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Anna Thorsø Larsen.

Ethics declarations

Ethics approval: All animal procedures were performed in accordance with guidelines from the Animal Welfare Division of the Danish Ministry of Justice under the institutional licenses issued to Nordic Bioscience (2021–15–0201–00886) and were carried out in accordance with the ARRIVE guidelines.

Conflicts of interests: MAK and KH own stock in Nordic Bioscience A/S. All authors are employed by Nordic Bioscience A/S.

Additional material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, A.T., Mohamed, K.E., Petersen, E.A. et al. The Insulin Sensitizer KBP-336 Prevents Diabetes-Induced Cognitive decline in ZDF Rats. J Prev Alzheimers Dis (2024). https://doi.org/10.14283/jpad.2024.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.14283/jpad.2024.74

Key words

Navigation