Skip to main content
Log in

Mendelian Randomization Analysis Reveals Causal Factors behind Alzheimer’s Disease Risk: Evidence, Opportunities, and Challenges

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease and its comorbidities pose a heavy disease burden globally, and its treatment remains a major challenge. Identifying the protective and risk factors for Alzheimer’s disease, as well as its possible underlying molecular processes, can facilitate the development of interventions that can slow its progression. Observational studies and randomized controlled trials have provided some evidence regarding potential risk factors for Alzheimer’s disease; however, the results of these studies vary. Mendelian randomization is a novel epidemiological methodology primarily used to infer causal relationships between exposures and outcomes. Many Mendelian randomization studies have identified potential causal relationships between Alzheimer’s disease and certain diseases, lifestyle habits, and biological exposures, thus providing valuable data for further mechanistic studies and the development and implementation of clinical prevention strategies. However, the results and data from Mendelian randomization studies must be interpreted based on comprehensive evidence. Moreover, the existing Mendelian randomization studies on the epidemiology of Alzheimer’s disease have some limitations that are worth exploring. Therefore, the aim of this review was to summarize the available evidence on the potential protective and risk factors for Alzheimer’s disease by assessing published Mendelian randomization studies on Alzheimer’s disease, and to provide new perspectives on the etiology of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

IGAP:

the International Genomics of Alzheimer’s Project

FinnGen R4:

the Fin-nGen consortium release 4

CHARGE:

the Cohorts for Heart and Aging Research in Genomic Epidemiology

UKBB(UKB):

the UK Biobank

CGPS:

Copenhagen General Population Study

CCHS:

Copenhagen City Heart Study

HGI:

the COVID-19 Host Genetics Initiative

PGC-ALZ:

the Psychiatric Genomic Consortium Alzheimer’s Disease Workgroup

ADSP:

the Alzheimer’s Disease Sequencing Project

ADGC:

the Alzheimer Disease Genetics Consortium

EADI:

the European Alzheimer’s Disease Initiative

GERAD/PERADES:

the Genetic and Environmental Risk in AD/ Polygenic and Environmental Risk for Alzheimer’s Disease Consortium

Andro:

androsterone sulfate

DHEAS:

dehydroepiandrosterone sulfate

E2:

estradio

Tot T:

total testosterone

LDL-c:

Low-density lipoprotein cholesterol

TG:

triglycerides

TC:

total cholesterol

MFH-UKBB:

maternal UKBB family history of AD

PFH-UKBB:

paternal UKBB family history of AD

CG A:

Chlorogenic Acid

ApoB:

Apolipoprotein B

Ca:

serum Calcium

VD:

Vitamin D

UA:

Uric Acid

Hey:

plasma Homocysteine

MCI:

mitochondrial complex I

AHMS:

AHMS gene (antihypertensive drug targets)

sTREM1:

soluble triggering receptor expressed on myeloid cells 1

GDF-15:

growth differentiation factor 15

glycoprotein acetyls:

GlycA.

References

  1. Chen YG. Research Progress in the Pathogenesis of Alzheimer’s Disease. Chinese Medical Journal. 2018;131(13):1618–1624. doi:https://doi.org/10.4103/0366-6999.235112

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–446. doi:https://doi.org/10.1016/S0140-6736(20)30367-6

    Google Scholar 

  3. Li J, Li C, Huang Y, et al. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. J Transl Med. 2022;20(1):621. doi:https://doi.org/10.1186/s12967-022-03822-9

    PubMed  PubMed Central  Google Scholar 

  4. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alz Dis. Published online 2021:1–9. doi:https://doi.org/10.14283/jpad.2021.15

  5. Guerreiro R, Bras J. The age factor in Alzheimer’s disease. Genome Med. 2015;7(1):106. doi:https://doi.org/10.1186/s13073-015-0232-5

    PubMed  PubMed Central  Google Scholar 

  6. Nebel RA, Aggarwal NT, Barnes LL, et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimer’s & Dementia. 2018;14(9):1171–1183. doi:https://doi.org/10.1016/j.jalz.2018.04.008

    Google Scholar 

  7. Nicolas B, Alessandra D, Daniela P, et al. Basal forebrain metabolism in Alzheimer’s disease continuum: relationship with education. Neurobiology of Aging. 2020;87:70–77. doi:https://doi.org/10.1016/j.neurobiolaging.2019.11.013

    PubMed  Google Scholar 

  8. Sáiz-Vazquez O, Puente-Martínez A, Ubillos-Landa S, Pacheco-Bonrostro J, Santabárbara J. Cholesterol and Alzheimer’s Disease Risk: A Meta-Meta-Analysis. Brain Sciences. 2020;10(6):386. doi:https://doi.org/10.3390/brainsci10060386

    PubMed  PubMed Central  Google Scholar 

  9. Dafsari FS, Jessen F. Depression—an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry. 2020;10(1):160. doi:https://doi.org/10.1038/s41398-020-0839-1

    PubMed  PubMed Central  Google Scholar 

  10. Cifuentes D, Poittevin M, Dere E, et al. Hypertension Accelerates the Progression of Alzheimer-Like Pathology in a Mouse Model of the Disease. Hypertension. 2015;65(1):218–224. doi:https://doi.org/10.1161/HYPERTENSIONAHA.114.04139

    CAS  PubMed  Google Scholar 

  11. Richmond RC, Davey Smith G. Mendelian Randomization: Concepts and Scope. Cold Spring Harb Perspect Med. 2022;12(1):a040501. doi:https://doi.org/10.1101/cshperspect.a040501

    PubMed  PubMed Central  Google Scholar 

  12. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics. 2014;23(R1):R89–R98. doi:https://doi.org/10.1093/hmg/ddu328

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ference BA, Holmes MV, Smith GD. Using Mendelian Randomization to Improve the Design of Randomized Trials. Cold Spring Harb Perspect Med. 2021;11(7):a040980. doi:https://doi.org/10.1101/cshperspect.a040980

    PubMed  PubMed Central  Google Scholar 

  14. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. Li J, ed. PLoS Genet. 2017;13(11):e1007081. doi:https://doi.org/10.1371/journal.pgen.1007081

    Google Scholar 

  15. Angrist JD, Imbens GW. Two-Stage Least Squares Estimation of Average Causal Effects in Models with Variable Treatment Intensity. Journal of the American Statistical Association. 1995;90(430):431–442. doi:https://doi.org/10.1080/01621459.1995.10476535

    Google Scholar 

  16. Hao X, Li W, Shi R, Wang Q. Investigating the causal mediating effect of type 2 diabetes on the relationship between traits and systolic blood pressure: A two-step Mendelian randomization study. Front Endocrinol. 2022;13:1090867. doi:https://doi.org/10.3389/fendo.2022.1090867

    Google Scholar 

  17. Deng Y, Tu D, O’Callaghan CJ, Liu G, Xu W. Two-stage multivariate Mendelian randomization on multiple outcomes with mixed distributions. Stat Methods Med Res. 2023;32(8):1543–1558. doi:https://doi.org/10.1177/09622802231181220

    PubMed  PubMed Central  Google Scholar 

  18. Yao S, Zhang M, Dong SS, et al. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat Hum Behav. 2022;6(11):1569–1576. doi:https://doi.org/10.1038/s41562-022-01412-9

    PubMed  Google Scholar 

  19. Yang Q, Millard LAC, Smith GD. Proxy gene-by-environment Mendelian randomization study confirms a causal effect of maternal smoking on offspring birthweight, but little evidence of long-term influences on offspring health. International Journal of Epidemiology. 2019;0(0).

  20. Nolde M, Alayash Z, Reckelkamm SL, et al. Downregulation of interleukin 6 signaling might reduce the risk of periodontitis: a drug target Mendelian randomization study. Front Immunol. 2023;14:1160148. doi:https://doi.org/10.3389/fimmu.2023.1160148

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Daniel RM, Butterworth AS, Thompson SG, the EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. International Journal of Epidemiology. 2015;44(2):484–495. doi:https://doi.org/10.1093/ije/dyu176

    PubMed  Google Scholar 

  22. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331–344. doi:https://doi.org/10.1038/nrg.2016.160

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hemani G, Zheng J, Eisworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408. doi:https://doi.org/10.7554/eLife.34408

    PubMed  PubMed Central  Google Scholar 

  24. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. International Journal of Epidemiology. 2016;45(6):1717–1726. doi:https://doi.org/10.1093/ije/dyx028

    PubMed  Google Scholar 

  25. Burgess S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. International Journal of Epidemiology. 2014;43(3):922–929. doi:https://doi.org/10.1093/ije/dyu005

    PubMed  PubMed Central  Google Scholar 

  26. Burgess S, Thompson SG. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology. 2015;181(4):251–260. doi:https://doi.org/10.1093/aje/kwu283

    PubMed  PubMed Central  Google Scholar 

  27. Au Yeung SL, Li AM, He B, Kwok KO, Schooling CM. Association of smoking, lung function and COPD in COVID-19 risk: a two-step Mendelian randomization study Addiction. 2022;117(7):2027–2036. doi:https://doi.org/10.1111/add.15852

    PubMed  PubMed Central  Google Scholar 

  28. Yu Z, Coresh J, Qi G, et al. A bidirectional Mendelian randomization study supports causal effects of kidney function on blood pressure. Kidney International. 2020;98(3):708–716. doi:https://doi.org/10.1016/j.kint.2020.04.044

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li P, Wang H, Guo L, et al. Association between gut microbiota and preedampsia-edampsia: a two-sample Mendelian randomization study. BMC Med. 2022;20(1):443. doi:https://doi.org/10.1186/s12916-022-02657-x

    PubMed  PubMed Central  Google Scholar 

  30. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology 2017;46(6):1985–1998. doi:https://doi.org/10.1093/ije/dyx102

    PubMed  PubMed Central  Google Scholar 

  31. Wu L, Sun D, He Y Coffee intake and the inddent risk of cognitive disorders: A dose-response meta-analysis of nine prospective cohort studies. Clinical Nutrition. 2017;36(3):730–736. doi:https://doi.org/10.1016/j.clnu.2016.05.015

    PubMed  Google Scholar 

  32. Van Gelder BM, Buijsse B, Tijhuis M, et al. Coffee consumption is inversely assodated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr. 2007;61(2):226–232. doi:https://doi.org/10.1038/sj.ejcn.1602495

    CAS  PubMed  Google Scholar 

  33. Zhang Z, Wang M, Yuan S, Cai H, Zhu SG, Liu X. Genetically Predicted Coffee Consumption and Risk of Alzheimer’s Disease and Stroke. JAD. 2021;83(4):1815–1823. doi:https://doi.org/10.3233/JAD-210678

    CAS  PubMed  Google Scholar 

  34. Zheng BK, Niu PP. Higher Coffee Consumption Is Assodated With Reduced Cerebral Gray Matter Volume: A Mendelian Randomization Study. Front Nutr. 2022;9:850004. doi:https://doi.org/10.3389/fnut.2022.850004

    PubMed  PubMed Central  Google Scholar 

  35. Larsson SC, Woolf B, Gill D. Plasma Caffeine Levels and Risk of Alzheimer’s Disease and Parkinson’s Disease: Mendelian Randomization Study. Nutrients. 2022;14(9):1697. doi:https://doi.org/10.3390/nu14091697

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nordestgaard AT, Nordestgaard BG, Frikke-Schmidt R, Juul Rasmussen I, Bojesen SE. Self-reported and genetically predicted coffee consumption and smoking in dementia: A Mendelian randomization study. Atherosclerosis. 2022;348:36–43. doi:https://doi.org/10.1016/j.atherosclerosis.2022.03.022

    CAS  PubMed  Google Scholar 

  37. Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. Published online 2014.

  38. Stephen R, Hongisto K, Solomon A, Lönnroos E. Physical Activity and Alzheimer’s Disease: A Systematic Review. GERONA. Published online January 3, 2017:glw251. doi:https://doi.org/10.1093/gerona/glw251

  39. Tolppanen A, Solomon A, Kulmala J, et al. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer’s & Dementia. 2015;11(4):434. doi:https://doi.org/10.1016/j.jalz.2014.01.008

    Google Scholar 

  40. Rovio S, Kåreholt I, Viitanen M, et al. Work-related physical activity and the risk of dementia and Alzheimer’s disease. Int J Geriat Psychiatry. 2007;22(9):874–882. doi:https://doi.org/10.1002/gps.1755

    Google Scholar 

  41. Wu PF, Lu H, Zhou X, et al. Assessment of causal effects of physical activity on neurodegenerative diseases: A Mendelian randomization study. Journal of Sport and Health Science. 2021;10(4):454–461. doi:https://doi.org/10.1016/j.jshs.2021.01.008

    PubMed  PubMed Central  Google Scholar 

  42. Liao Q, He J, Huang K. Physical activities and risk of neurodegenerative diseases: A two-sample Mendelian randomization study. Front Aging Neurosci. 2022;14:991140. doi:https://doi.org/10.3389/fnagi.2022.991140

    PubMed  PubMed Central  Google Scholar 

  43. Baumeister SE, Karch A, Bahls M, Teumer A, Leitzmann MF, Baurecht H. Physical Activity and Risk of Alzheimer’s Disease: A Two-Sample Mendelian Randomization Study Genetics; 2019. doi:https://doi.org/10.1101/819821

  44. Meng X, D’Arcy C. Education and Dementia in the Context of the Cognitive Reserve Hypothesis: A Systematic Review with Meta-Analyses and Qualitative Analyses. Laks J, ed. PLoS ONE. 2012;7(6):e38268. doi:https://doi.org/10.1371/journal.pone.0038268

    CAS  Google Scholar 

  45. Larsson SC, Traylor M, Malik R, Dichgans M, Burgess S, Markus HS. Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ. Published online December 6, 2017:j5375. doi:https://doi.org/10.1136/bmj.j5375

  46. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. The Lancet Neurology. 2014;13(8):788–794. doi:https://doi.org/10.1016/S1474-4422(14)70136-X

    PubMed  Google Scholar 

  47. Anderson EL, Howe LD, Wade KH, et al. Education, intelligence and Alzheimer’s disease: evidence from a multivariable two-sample Mendelian randomization study. International Journal of Epidemiology. 2020;0(0).

  48. Seyedsalehi A, Warrier V, Bethlehem RAI, Perry BI, Burgess S, Murray GK. Educational attainment, structural brain reserve and Alzheimer’s disease: a Mendelian randomization analysis. Brain. Published online October 31, 2022:awac392. doi:https://doi.org/10.1093/brain/awac392

  49. Giovacchini G, Giovannini E, Borsò E, et al. The brain cognitive reserve hypothesis: A review with emphasis on the contribution of nuclear medicine neuroimaging techniques. Journal Cellular Physiology. 2019;234(9):14865–14872. doi:https://doi.org/10.1002/jcp.28308

    CAS  Google Scholar 

  50. Potter GG, Helms MJ, Burke JR, Steffens DC, Piassman BL. Job demands and dementia risk among male twin pairs. Alzheimer’s & Dementia. 2007;3(3):192–199. doi: https://doi.org/10.1016/j.jalz.2007.04.377

    Google Scholar 

  51. Valenzuela MJ, Sachdev P. Brain reserve and dementia: a systematic review. Psychol Med. 2006;36(4):441–454. doi:https://doi.org/10.1017/S0033291705006264

    PubMed  Google Scholar 

  52. Ansiau D, Marquie JC, Soubelet A, Ramos S. Relationships between cognitive characteristics of the job, age, and cognitive efficiency. International Congress Series.

  53. Ko H, Kim S, Kim K, et al. Genome-wide association study of occupational attainment as a proxy for cognitive reserve. Brain. 2022;145(4):1436–1448. doi:https://doi.org/10.1093/brain/awab351

    PubMed  Google Scholar 

  54. Reitz C, den Heijer T, van Duijn C, Hofman A, Breteler MMB. Relation between smoking and risk of dementia and Alzheimer disease: The Rotterdam Study. Neurology. 2007;69(10):998–1005. doi:https://doi.org/10.1212/01.wnl.0000271395.29695.9a

    CAS  PubMed  Google Scholar 

  55. Yang L, Shen J, Liu C, et al. Nicotine rebalances NAD+ homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat Commun. 2023;14(1):900. doi:https://doi.org/10.1038/s41467-023-36543-8

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Beghi E, Giussani G, Westenberg E, et al. Acute and post-acute neurological manifestations of COVID-19: present findings, critical appraisal, and future directions. J Neurol. 2022;269(5):2265–2274. doi:https://doi.org/10.1007/s00415-021-10848-4

    CAS  PubMed  Google Scholar 

  57. Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059–3071.doi:https://doi.org/10.1007/s00415-021-10406-y

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren AL, Digby RJ, Needham EJ. Neurological update: COVID-19. J Neurol. 2021;268(11):4379–4387. doi:https://doi.org/10.1007/s00415-021-10581-y

    CAS  PubMed  PubMed Central  Google Scholar 

  59. COVID-19 Host Genetics Initiative, COVID-19 Host Genetics InitiativeLeadership, Niemi MEK, et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–477. doi:https://doi.org/10.1038/s41586-021-03767-x

    Google Scholar 

  60. Li C, Liu J, Lin J, Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl Psychiatry. 2022;12(1):283. doi:https://doi.org/10.1038/s41398-022-02052-3

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang SY, Yang YX, Kuo K, et al. Herpesvirus infections and Alzheimer’s disease: a Mendelian randomization study. Alz Res Therapy. 2021;13(1):158. doi:https://doi.org/10.1186/s13195-021-00905-5

    CAS  Google Scholar 

  62. Cermakova P, Eriksdotter M, Lund LH, Winblad B, Religa P, Religa D. Heart failure and Alzheimer’s disease. J Intern Med. 2015;277(4):406–425. doi:https://doi.org/10.1111/joim.12287

    CAS  PubMed  Google Scholar 

  63. Markousis-Mavrogenis G, Noutsias M, Rigopoulos AG, et al. The Emerging Role of Combined Brain/Heart Magnetic Resonance Imaging for the Evaluation of Brain/Heart Interaction in Heart Failure. JCM. 2022;11(14):4009. doi:https://doi.org/10.3390/jcm11144009

    PubMed  PubMed Central  Google Scholar 

  64. Duan C, Shi J, Yuan G, et al. Causal Association Between Heart Failure and Alzheimer’s Disease: A Two-Sample Bidirectional Mendelian Randomization Study Front Genet. 2022;12:772343. doi:https://doi.org/10.3389/fgene.2021.772343

    PubMed  PubMed Central  Google Scholar 

  65. Arega Y, Shao Y Heart failure and late-onset Alzheimer’s disease: A Mendelian randomization study. Front Genet. 2022;13:1015674. doi:https://doi.org/10.3389/fgene.2022.1015674

    PubMed  PubMed Central  Google Scholar 

  66. Li H, Wen Z. Effects of ulcerative colitis and Crohn’s disease on neurodegenerative diseases: A Mendelian randomization study. Front Genet. 2022;13:846005. doi:https://doi.org/10.3389/fgene.2022.846005

    PubMed  PubMed Central  Google Scholar 

  67. Wei T, Guo Z, Wang Z, et al. Five Major Psychiatric Disorders and Alzheimer’s Disease: A Bidirectional Mendelian Randomization Study. Yu J tai, ed. JAD. 2022;87(2):675–684. doi:https://doi.org/10.3233/JAD-220010

  68. Li J, Zhao L, Ding X, Cui X, Qi L, Chen Y Obstructive sleep apnea and the risk of Alzheimer’s disease and Parkinson disease: A Mendelian randomization study OSA, Alzheimer’s disease and Parkinson disease. Sleep Medicine. 2022;97:55–63. doi:https://doi.org/10.1016/j.sleep.2022.06.004

    PubMed  Google Scholar 

  69. Ou YN, Zhao B, Fu Y, et al. The Association of Serum Uric Acid Level, Gout, and Alzheimer’s Disease: A Bidirectional Mendelian Randomization Study. Zhu LQ, ed. JAD. 2022;89(3):1063–1073. doi:https://doi.org/10.3233/JAD-220649

  70. Wang T, Ni Q bin, Wang K, Han Z, Sun B liang. Stroke and Alzheimer’s Disease: A Mendelian Randomization Study. Front Genet. 2020;11:581. doi:https://doi.org/10.3389/fgene.2020.00581

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: Neurobiological links and common pharmacological targets. European Journal of Pharmacology. 2010;626(1):64–71. doi:https://doi.org/10.1016/j.ejphar.2009.10.022

    CAS  PubMed  Google Scholar 

  72. Mourao RJ, Mansur G, Malloy-Diniz LF, Castro Costa E, Diniz BS. Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: systematic review and meta-analysis: MCI, depression and risk of dementia. Int J Geriatr Psychiatry. 2016;31(8):905–911. doi:https://doi.org/10.1002/gps.4406

    PubMed  Google Scholar 

  73. Harerimana NV, Liu Y, Gerasimov ES, et al. Genetic Evidence Supporting a Causal Role of Depression in Alzheimer’s Disease. Biological Psychiatry. 2022;92(1):25–33. doi:https://doi.org/10.1016/j.biopsych.2021.11.025

    CAS  PubMed  Google Scholar 

  74. Kuo CY, Hsiao HT, Lo IH, Nikolai T. Association Between Obstructive Sleep Apnea, Its Treatment, and Alzheimer’s Disease: Systematic Mini-Review. Front Aging Neurosci. 2021;12:591737. doi:https://doi.org/10.3389/fnagi.2020.591737

    PubMed  PubMed Central  Google Scholar 

  75. Andrade AG, Bubu OM, Varga AW, Osorio RS. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. Perry G, Avila J, Moreira PI, Sorensen AA, Tabaton M, eds. JAD. 2018;64(s1):S255-S270. doi: https://doi.org/10.3233/JAD-179936

  76. Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer’s disease. J Neuroinflammation. 2020;17(1):289. doi:https://doi.org/10.1186/s12974-020-01960-9

    PubMed  PubMed Central  Google Scholar 

  77. Shi L, Chen SJ, Ma MY, et al. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Medicine Reviews. 2018;40:4–16. doi:https://doi.org/10.1016/j.smrv.2017.06.010

    PubMed  Google Scholar 

  78. Anderson EL, Richmond RC, Jones SE, et al. Is disrupted sleep a risk factor for Alzheimer’s disease? Evidence from a two-sample Mendelian randomization analysis. International Journal of Epidemiology. 2020;00(00).

  79. Chen D, Wang X, Huang T, Jia J. Sleep and Late-Onset Alzheimer’s Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front Genet. 2022;13:794202. doi:https://doi.org/10.3389/fgene.2022.794202

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol. 2020;57(12):5026–5043. doi:https://doi.org/10.1007/s12035-020-02073-3

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. IJMS. 2020;21(20):7551. doi:https://doi.org/10.3390/ijms21207551

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sciences. 2021;264:118627. doi:https://doi.org/10.1016/j.lfs.2020.118627

    CAS  PubMed  Google Scholar 

  83. Ning J, Huang SY, Chen SD, Zhang YR, Huang YY, Yu JT. Investigating Casual Associations Among Gut Microbiota, Metabolites, and Neurodegenerative Diseases: A Mendelian Randomization Study. Zhu LQ, ed. JAD. 2022;87(1):211–222. doi:https://doi.org/10.3233/JAD-215411

  84. Zhuang Z, Gao M, Yang R, Liu Z, Cao W, Huang T. Causal relationships between gut metabolites and Alzheimer’s disease: a bidirectional Mendelian randomization study. Neurobiology of Aging. 2021;100:119.e15–119.e18. doi:https://doi.org/10.1016/j.neurobiolaging.2020.10.022

    CAS  PubMed  Google Scholar 

  85. Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A. The Endogenous Estrogen Status Regulates Microglia Reactivity in Animal Models of Neuroinflammation. Endocrinology 2006;147(5):2263–2272. doi:https://doi.org/10.1210/en.2005-1330

    CAS  PubMed  Google Scholar 

  86. Ramsden M, Nyborg AC, Murphy MP, et al. Androgens modulate β-amyloid levels in male rat brain: Androgens modulate Aβ levels. Journal of Neurochemistry. 2004;87(4):1052–1055. doi:https://doi.org/10.1046/j.1471-4159.2003.02114.x

    Google Scholar 

  87. Lei Y, Renyuan Z. Effects of Androgens on the Amyloid-β Protein in Alzheimer’s Disease. Endocrinology 2018;159(12):3885–3894. doi:https://doi.org/10.1210/en.2018-00660

    CAS  PubMed  Google Scholar 

  88. Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors. Frontiers in Neuroendocrinology. 2016;43:60–82. doi:https://doi.org/10.1016/j.yfrne.2016.09.001

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kusters CDJ, Paul KC, Romero T, Sinsheimer JS, Ritz BR. Among men, androgens are associated with a decrease in Alzheimer’s disease risk. Alzheimer’s & Dementia. Published online March 20, 2023:alz.13013. doi:https://doi.org/10.1002/alz.13013

  90. Reitz C. Dyslipidemia and the Risk of Alzheimer’s Disease. Curr Atheroscler Rep. 2013;15(3):307. doi:https://doi.org/10.1007/s11883-012-0307-3

    PubMed  PubMed Central  Google Scholar 

  91. Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. Journal of Lipid Research. 2017;58(11):2083–2101. doi:https://doi.org/10.1194/jlr.R076331

    CAS  PubMed  PubMed Central  Google Scholar 

  92. for the Alzheimer’s Disease Neuroimaging Initiative, Dunk MM, Driscoll I. Total Cholesterol and APOE-Related Risk for Alzheimer’s Disease in the Alzheimer’s Disease Neuroimaging Initiative. JAD. 2022;85(4):1519–1528. doi:https://doi.org/10.3233/JAD-215091

    Google Scholar 

  93. Proitsi P, Lupton MK, Velayudhan L, et al. Genetic Predisposition to Increased Blood Cholesterol and Triglyceride Lipid Levels and Risk of Alzheimer Disease: A Mendelian Randomization Analysis. George DS, ed. PLoS Med. 2014;11(9):e1001713. doi:https://doi.org/10.1371/journal.pmed.1001713

    Google Scholar 

  94. Tomata Y, Larsson SC, Hägg S. Polyunsaturated fatty acids and risk of Alzheimer’s disease: a Mendelian randomization study. Eur J Nutr. 2020;59(4):1763–1766. doi:https://doi.org/10.1007/s00394-019-02126-x

    CAS  PubMed  Google Scholar 

  95. Huang SY, Yang YX, Zhang YR, et al. Investigating Causal Relations Between Circulating Metabolites and Alzheimer’s Disease: A Mendelian Randomization Study. Zhu LQ, ed. JAD. 2022;87(1):463–477. doi:https://doi.org/10.3233/JAD-220050

  96. Anderson JJB, Kruszka B, Delaney JAC, et al. Calcium Intake From Diet and Supplements and the Risk of Coronary Artery Calcification and its Progression Among Older Adults: 10-Year Follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). JAHA. 2016;5(10):e003815. doi:https://doi.org/10.1161/JAHA.116.003815

    PubMed  PubMed Central  Google Scholar 

  97. Jadiya P, Kolmetzky DW, Tornar D, et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun. 2019;10(1):3885. doi:https://doi.org/10.1038/s41467-019-11813-6

    PubMed  PubMed Central  Google Scholar 

  98. He Y, Zhang H, Wang T, et al. Impact of Serum Calcium Levels on Alzheimer’s Disease: A Mendelian Randomization Study. Yu JT, ed. JAD. 2020;76(2):713–724. doi:https://doi.org/10.3233/JAD-191249

  99. Shi Y, Liu R, Guo Y, et al. An Updated Mendelian Randomization Analysis of the Association Between Serum Calcium Levels and the Risk of Alzheimer’s Disease. Front Genet. 2021;12:731391. doi:https://doi.org/10.3389/fgene.2021.731391

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang L, Qiao Y, Zhang H, et al. Circulating Vitamin D Levels and Alzheimer’s Disease: A Mendelian Randomization Study in the IGAP and UK Biobank. Yu JT, ed. JAD. 2020;73(2):609–618. doi:https://doi.org/10.3233/JAD-190713

  101. Larsson S, Traylor M, Markus H, Michaëlsson K. Serum Parathyroid Hormone, 25-Hydroxyvitamin D, and Risk of Alzheimer’s Disease: A Mendelian Randomization Study. Nutrients. 2018;10(9):1243. doi:https://doi.org/10.3390/nu10091243

    PubMed  PubMed Central  Google Scholar 

  102. Du N, Xu D, Hou X, et al. Inverse Association Between Serum Uric Acid Levels and Alzheimer’s Disease Risk. Mol Neurobiol. 2016;53(4):2594–2599. doi:https://doi.org/10.1007/s12035-015-9271-6

    CAS  PubMed  Google Scholar 

  103. Euser SM, Hofman A, Westendorp RGJ, Breteler MMB. Serum uric acid and cognitive function and dementia. Brain. 2008;132(2):377–382. doi:https://doi.org/10.1093/brain/awn316

    PubMed  Google Scholar 

  104. Verhaaren BFJ, Vernooij MW, Dehghan A, et al. The Relation of Uric Acid to Brain Atrophy and Cognition: The Rotterdam Scan Study. Neuroepidemiology. 2013;41(1):29–34. doi:https://doi.org/10.1159/000346606

    PubMed  Google Scholar 

  105. Hu Q, Teng W, Li J, Hao F, Wang N. Homocysteine and Alzheimer’s Disease: Evidence for a Causal Link from Mendelian Randomization. JAD. 2016;52(2):747–756. doi:https://doi.org/10.3233/JAD-150977

    CAS  PubMed  Google Scholar 

  106. Aguado J, d’Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Research Reviews. 2020;62:101115. doi:https://doi.org/10.1016/j.arr.2020.101115

    CAS  PubMed  Google Scholar 

  107. Gao K, Wei C, Zhu J, et al. Exploring the Causal Pathway From Telomere Length to Alzheimer’s Disease: An Update Mendelian Randomization Study. Front Psychiatry. 2019;10:843. doi:https://doi.org/10.3389/fpsyt.2019.00843

    PubMed  PubMed Central  Google Scholar 

  108. Rodríguez-Fernández B, Gispert JD, Guigo R, Navarro A, Vilor-Tejedor N, Crous-Bou M. Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy. Computational and Structural Biotechnology Journal. 2022;20:4251–4256. doi:https://doi.org/10.1016/j.csbj.2022.08.006

    PubMed  PubMed Central  Google Scholar 

  109. Wu PF, Zhang XH, Zhou P, Yin R, Zhou XT, Zhang W. Growth Differentiation Factor 15 Is Associated With Alzheimer’s Disease Risk. Front Genet. 202LT2:700371. doi:https://doi.org/10.3389/fgene.2021.700371

  110. Shi X, Wei T, Hu Y, Wang M, Tang Y The associations between plasma soluble Treml and neurological diseases: a Mendelian randomization study. J Neuroinflammation. 2022;19(1):218. doi:https://doi.org/10.1186/s12974-022-02582-z

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. CN. 2020;18(11):1106–1125. doi:https://doi.org/10.2174/1570159X18666200528142429

    CAS  Google Scholar 

  112. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Euro J of Neurology. 2018;25(1):59–70. doi:https://doi.org/10.1111/ene.13439

    CAS  Google Scholar 

  113. Yeung CHC, Lau KWD, Au Yeung SL, Schooling CM. Amyloid, tau and risk of Alzheimer’s disease: a Mendelian randomization study. Eur J Epidemiol. 2021;36(1):81–88. doi:https://doi.org/10.1007/s10654-020-00683-8

    CAS  PubMed  Google Scholar 

  114. Ou YN, Tan CC, Shen XN, et al. Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 209 Prospective Studies. Hypertension. 2020;76(1):217–225. doi:https://doi.org/10.1161/HYPERTENSIONAHA.120.14993

    CAS  PubMed  Google Scholar 

  115. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. The Lancet Neurology. 2005;4(8):487–499. doi:https://doi.org/10.1016/S1474-4422(05)70141-l

    PubMed  Google Scholar 

  116. Sproviero W, Winchester L, Newby D, et al. High Blood Pressure and Risk of Dementia: A Two-Sample Mendelian Randomization Study in the UK Biobank. Biological Psychiatry. 2021;89(8):817–824. doi:https://doi.org/10.1016/j.biopsych.2020.12.015

    PubMed  Google Scholar 

  117. Pan Y, Chen W, Yan H, Wang M, Xiang X. Glycemic traits and Alzheimer’s disease: a mendelian randomization study, aging. Published online November 16, 2020. doi:https://doi.org/10.18632/aging.103887

  118. Zheng J, Xu M, Walker V, et al. Evaluating the efficacy and mechanism of metformin targets on reducing Alzheimer’s disease risk in the general population: a Mendelian randomisation study. Diabetologie 2022;65(10):1664–1675. doi:https://doi.org/10.1007/s00125-022-05743-0

    CAS  Google Scholar 

  119. Tang B, Wang Y, Jiang X, et al. Genetic Variation in Targets of Antidiabetic Drugs and Alzheimer Disease Risk: A Mendelian Randomization Study. Neurology. 2022;99(7):e650–e659. doi:https://doi.org/10.1212/WNL.0000000000200771

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Williams DM, Finan C, Schmidt AF, Burgess S, Hingorani AD. Lipid lowering and Alzheimer disease risk: A mendelian randomization study. Ann Neurol. 2020;87(1):30–39. doi:https://doi.org/10.1002/ana.25642

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Funding

Funding: This work was supported by a grant from the Shaanxi Provincial Department of Science and Technology (2023-YBSF-152). The funder had no role in the research process or in the writing of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: XF wrote the main manuscript text and prepared the figures. LZ and YH prepared the table. WM, XC and ZM revised the manuscript. LY provided the concepts and guided this study. All authors reviewed the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Lin Yang.

Ethics declarations

Ethics statement: Ethical review and approval were not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Conflict of interest: None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, L., Hou, Y. et al. Mendelian Randomization Analysis Reveals Causal Factors behind Alzheimer’s Disease Risk: Evidence, Opportunities, and Challenges. J Prev Alzheimers Dis 11, 749–758 (2024). https://doi.org/10.14283/jpad.2024.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2024.30

Key words

Navigation