Skip to main content
Log in

Relationships of Hypnotics with Incident Dementia and Alzheimer’s Disease: A Longitudinal Study and Meta-Analysis

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Evidence describing the association between hypnotics use and dementia risk is conflicting. It is unknown if the controversy is related to the type or dose of hypnotics or if hypnotics affect different populations.

Objectives

We sought to derive lessons learned and future projections based on evidence from longitudinal studies.

Measurements

In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, 1,543 older adults without dementia (mean age = 73.3 years, female = 45%) were followed for four years. The association between hypnotics and the risk of Alzheimer’s disease (AD) was investigated using Cox proportional hazards regressions. Next, electronic databases were searched until March 2022 to conduct the evidence synthesis of the associations of hypnotics with incident risk of dementia.

Results

In the ADNI cohort, ever use of hypnotics was associated with an increased risk of AD (hazard ratio = 1.96, 95% confidence intervals = 1.23–3.11, p < 0.01). This association was significant for benzodiazepines and Z-drugs but not for melatonin. The association was stronger in long-term (more than one year) users and those with high cumulative doses. A meta-analysis of 26 longitudinal studies with 3,942,018 participants revealed a correlation between the use of hypnotics and the risk of dementia (relative risk = 1.23, 95% confidence intervals = 1.13–1.33, p < 0.001, median risk difference = 4%). It is a linear dose-response relationship, if a person takes the daily recommended dose for 100 days, their risk of developing dementia increases by 5% relative to non-users. According to subgroup analyses, neither association was significant among patients with a history of insomnia.

Conclusions

Individuals who use hypnotics, especially high-dose or long-term users, are at a higher risk of dementia and AD. The main issue with conclusion credibility is heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ACD:

all-cause dementia

ADNI:

Alzheimer’s Disease Neuroimaging Initiative

Aβ:

Amyloid β

BZDs:

Benzodiazepines

BMI:

Body mass index

CI:

Confidence interval

CNS:

Central nervous system

DDD:

defined daily dose

CDDD:

Cumulative defined daily dose

CBT:

Cognitive behavioral therapy

GABA:

Gamma-aminobutyric acid

HR:

Hazard ratio

MCI:

Mild cognitive impairment

NOS:

Newcastle-Ottawa Quality Assessment Scale

NC:

Normal cognition

OR:

Odds ratio

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines

PI:

Prediction interval

RR:

Relative risk

VD:

vascular dementia.

References

  1. Patterson C. World alzheimer report 2018. 2018.

  2. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. (2468-2667 (Electronic)).

  3. Xu W, Tan CC, Zou JJ, Cao XP, Tan L. Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020;91(3):236–44. https://doi.org/10.1136/jnnp-2019-321896

    Article  PubMed  Google Scholar 

  4. Xu W, Tan L, Su BJ, Yu H, Bi YL, Yue XF, et al. Sleep characteristics and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact older adults: The CABLE study. Alzheimers Dement. 2020;16(8):1146–52. https://doi.org/10.1002/alz.12117

    Article  PubMed  Google Scholar 

  5. Balon R, Starcevic V, Silberman E, Cosci F, Dubovsky S, Fava GA, et al. The rise and fall and rise of benzodiazepines: a return of the stigmatized and repressed. Braz J Psychiatry. 2020;42(3):243–4. https://doi.org/10.1590/1516-4446-2019-0773

    Article  PubMed  PubMed Central  Google Scholar 

  6. Greenblatt DJ, Shader RI. Drug therapy. Benzodiazepines (first of two parts). N Engl J Med. 1974;291(19):1011–5. https://doi.org/10.1056/nejm197411072911906

    Article  CAS  PubMed  Google Scholar 

  7. Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015;72(2):136–42. https://doi.org/10.1001/jamapsychiatry.2014.1763

    Article  PubMed  Google Scholar 

  8. Verdoux H, Lagnaoui R, Begaud B. Is benzodiazepine use a risk factor for cognitive decline and dementia? A literature review of epidemiological studies. Psychol Med. 2005;35(3):307–15. https://doi.org/10.1017/s0033291704003897

    Article  PubMed  Google Scholar 

  9. Dyer AH, Murphy C, Lawlor B, Kennelly SP. Cognitive Outcomes of Long-term Benzodiazepine and Related Drug (BDZR) Use in People Living With Mild to Moderate Alzheimer’s Disease: Results From NILVAD. J Am Med Dir Assoc. 2020;21(2):194–200. https://doi.org/10.1016/j.jamda.2019.08.006

    Article  PubMed  Google Scholar 

  10. Tseng LY, Huang ST, Peng LN, Chen LK, Hsiao FY. Benzodiazepines, z-Hypnotics, and Risk of Dementia: Special Considerations of Half-Lives and Concomitant Use. Neurotherapeutics. 2020;17(1):156–64. https://doi.org/10.1007/s13311-019-00801-9

    Article  CAS  PubMed  Google Scholar 

  11. Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA, et al. Benzodiazepine use and risk of incident dementia or cognitive decline: prospective population based study. BMJ. 2016;352:i90. https://doi.org/10.1136/bmj.i90

    Article  PubMed  PubMed Central  Google Scholar 

  12. Osler M, Jørgensen MB. Associations of Benzodiazepines, Z-Drugs, and Other Anxiolytics With Subsequent Dementia in Patients With Affective Disorders: A Nationwide Cohort and Nested Case-Control Study. Am J Psychiatry. 2020;177(6):497–505. https://doi.org/10.1176/appi.ajp.2019.19030315

    Article  PubMed  Google Scholar 

  13. Horton R. Offline: The scramble for science. The Lancet. 2022;400(10357). https://doi.org/10.1016/s0140-6736(22)01750-0

    Google Scholar 

  14. Weber CJ, Carrillo MC, Jagust W, Jack CR, Jr., Shaw LM, Trojanowski JQ, et al. The Worldwide Alzheimer’s Disease Neuroimaging Initiative: ADNI-3 updates and global perspectives. Alzheimers Dement (N Y). 2021;7(1):e12226. https://doi.org/10.1002/trc2.12226

    Article  PubMed  Google Scholar 

  15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44. https://doi.org/10.1212/wnl.34.7.939

    Article  CAS  PubMed  Google Scholar 

  16. Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, et al. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology. 2011;76(1):69–79. https://doi.org/10.1212/WNL.0b013e318204a397

    Article  CAS  PubMed  Google Scholar 

  17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford; 2000.

  19. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  20. Johnson MD, Bebb RA, Sirrs SM. Uses of DHEA in aging and other disease states. Ageing Research Reviews. 2002;1(1):29–41. https://doi.org/10.1016/S0047-6374(01)00369-4

    Article  CAS  PubMed  Google Scholar 

  21. Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. Bmj. 2014;348:f7450. https://doi.org/10.1136/bmj.f7450

    Article  PubMed  Google Scholar 

  22. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. Bmj. 2011;342:d549. https://doi.org/10.1136/bmj.d549

    Article  PubMed  Google Scholar 

  23. Hedges LV, Tipton E, Johnson MC. Robust variance estimation in metaregression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39–65. https://doi.org/10.1002/jrsm.5

    Article  PubMed  Google Scholar 

  24. Xu C, Doi SAR. The robust error meta-regression method for dose-response meta-analysis. Int J Evid Based Healthc. 2018;16(3):138–44. https://doi.org/10.1097/xeb.0000000000000132

    Article  PubMed  Google Scholar 

  25. Penninkilampi R, Eslick GD. A Systematic Review and Meta-Analysis of the Risk of Dementia Associated with Benzodiazepine Use, After Controlling for Protopathic Bias. CNS Drugs. 2018;32(6):485–97. https://doi.org/10.1007/s40263-018-0535-3

    Article  CAS  PubMed  Google Scholar 

  26. Aldaz P, Garjón J, Beitia G, Beltrán I, Librero J, Ibáñez B, et al. Association between benzodiazepine use and development of dementia. Medicina Clínica (English Edition). 2021;156(3):107–11. https://doi.org/10.1016/j.medcle.2020.02.011

    Article  CAS  Google Scholar 

  27. Torres-Bondia F, Dakterzada F, Galvan L, Buti M, Besanson G, Grill E, et al. Benzodiazepine and Z-Drug Use and the Risk of Developing Dementia. Int J Neuropsychopharmacol. 2022;25(4):261–8. https://doi.org/10.1093/ijnp/pyab073

    Article  CAS  PubMed  Google Scholar 

  28. Gerlach LB, Myra Kim H, Ignacio RV, Strominger J, Maust DT. Use of Benzodiazepines and Risk of Incident Dementia: A Retrospective Cohort Study. J Gerontol A Biol Sci Med Sci. 2022;77(5):1035–41. https://doi.org/10.1093/gerona/glab241

    Article  CAS  PubMed  Google Scholar 

  29. Nafti M, Sirois C, Kröger E, Carmichael PH, Laurin D. Is Benzodiazepine Use Associated With the Risk of Dementia and Cognitive Impairment-Not Dementia in Older Persons? The Canadian Study of Health and Aging. Ann Pharmacother. 2020;54(3):219–25. https://doi.org/10.1177/1060028019882037

    Article  PubMed  Google Scholar 

  30. Hafdi M, Hoevenaar-Blom MP, Beishuizen CRL, Moll van Charante EP, Richard E, van Gool WA. Association of Benzodiazepine and Anticholinergic Drug Usage With Incident Dementia: A Prospective Cohort Study of Community-Dwelling Older Adults. J Am Med Dir Assoc. 2020;21(2):188–93.e3. https://doi.org/10.1016/j.jamda.2019.05.010

    Article  PubMed  Google Scholar 

  31. Baek YH, Lee H, Kim WJ, Chung JE, Pratt N, Kalisch Ellett L, et al. Uncertain Association Between Benzodiazepine Use and the Risk of Dementia: A Cohort Study. J Am Med Dir Assoc. 2020;21(2):201–11.e2. https://doi.org/10.1016/j.jamda.2019.08.017

    Article  PubMed  Google Scholar 

  32. Richardson K, Mattishent K, Loke YK, Steel N, Fox C, Grossi CM, et al. History of Benzodiazepine Prescriptions and Risk of Dementia: Possible Bias Due to Prevalent Users and Covariate Measurement Timing in a Nested Case-Control Study. Am J Epidemiol. 2019;188(7):1228–36. https://doi.org/10.1093/aje/kwz073

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grossi CM, Richardson K, Fox C, Maidment I, Steel N, Loke YK, et al. Anticholinergic and benzodiazepine medication use and risk of incident dementia: a UK cohort study. BMC Geriatr. 2019;19(1):276. https://doi.org/10.1186/s12877-019-1280-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tapiainen V, Taipale H, Tanskanen A, Tiihonen J, Hartikainen S, Tolppanen AM. The risk of Alzheimer’s disease associated with benzodiazepines and related drugs: a nested case-control study. Acta Psychiatr Scand. 2018;138(2):91–100. https://doi.org/10.1111/acps.12909

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Jung SJ, Choi JW, Shin A, Lee YJ. Use of sedative-hypnotics and the risk of Alzheimer’s dementia: A retrospective cohort study. PLoS One. 2018;13(9):e0204413. https://doi.org/10.1371/journal.pone.0204413

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mawanda F, Wallace RB, McCoy K, Abrams TE. PTSD, Psychotropic Medication Use, and the Risk of Dementia Among US Veterans: A Retrospective Cohort Study. J Am Geriatr Soc. 2017;65(5):1043–50. https://doi.org/10.1111/jgs.14756

    Article  PubMed  Google Scholar 

  37. Chan T-t, Leung WC-y, Li V, Wong K-yW, Chu W-m, Leung K-c, et al. Association between high cumulative dose of benzodiazepine in Chinese patients and risk of dementia: a preliminary retrospective case-control study. Psychogeriatrics. 2017;17(5):310–6. https://doi.org/10.1111/psyg.12239

    Article  PubMed  Google Scholar 

  38. Shash D, Kurth T, Bertrand M, Dufouil C, Barberger-Gateau P, Berr C, et al. Benzodiazepine, psychotropic medication, and dementia: A population-based cohort study. Alzheimers Dement. 2016;12(5):604–13. https://doi.org/10.1016/j.jalz.2015.10.006

    Article  PubMed  Google Scholar 

  39. Billioti de Gage S, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M, et al. Benzodiazepine use and risk of Alzheimer’s disease: case-control study. BMJ. 2014;349:g5205. https://doi.org/10.1136/bmj.g5205

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gallacher J, Elwood P, Pickering J, Bayer A, Fish M, Ben-Shlomo Y. Benzodiazepine use and risk of dementia: evidence from the Caerphilly Prospective Study (CaPS). J Epidemiol Community Health. 2012;66(10):869–73. https://doi.org/10.1136/jech-2011-200314

    Article  PubMed  Google Scholar 

  41. Wu CS, Wang SC, Chang IS, Lin KM. The association between dementia and long-term use of benzodiazepine in the elderly: nested case-control study using claims data. Am J Geriatr Psychiatry. 2009;17(7):614–20. https://doi.org/10.1097/JGP.0b013e3181a65210

    Article  PubMed  Google Scholar 

  42. Lagnaoui R, Bégaud B, Moore N, Chaslerie A, Fourrier A, Letenneur L, et al. Benzodiazepine use and risk of dementia: a nested case-control study. J Clin Epidemiol. 2002;55(3):314–8. https://doi.org/10.1016/s0895-4356(01)00453-x

    Article  PubMed  Google Scholar 

  43. Cheng HT, Lin FJ, Erickson SR, Hong JL, Wu CH. The Association Between the Use of Zolpidem and the Risk of Alzheimer’s Disease Among Older People. J Am Geriatr Soc. 2017;65(11):2488–95. https://doi.org/10.1111/jgs.15018

    Article  PubMed  Google Scholar 

  44. Lin CE, Lee MS, Kao SY, Chung CH, Chen LF, Chou PH, et al. Association between concurrent antidepressant and hypnotic treatment and the risk of dementia: A nationwide cohort study. J Affect Disord. 2020;277:549–58. https://doi.org/10.1016/j.jad.2020.08.025

    Article  CAS  PubMed  Google Scholar 

  45. Chiu H-Y, Lin E-Y, Wei L, Lin J-H, Lee H-C, Fan Y-C, et al. Hypnotics use but not insomnia increased the risk of dementia in traumatic brain injury patients. European Neuropsychopharmacology. 2015;25(12):2271–7. https://doi.org/10.1016/j.euroneuro.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  46. Robbins R, DiClemente RJ, Troxel AB, Jean-Louis G, Butler M, Rapoport DM, et al. Sleep medication use and incident dementia in a nationally representative sample of older adults in the US. Sleep Med. 2020. https://doi.org/10.1016/j.sleep.2020.11.004

  47. Gomm W, von Holt K, Thome F, Broich K, Maier W, Weckbecker K, et al. Regular Benzodiazepine and Z-Substance Use and Risk of Dementia: An Analysis of German Claims Data. J Alzheimers Dis. 2016;54(2):801–8. https://doi.org/10.3233/JAD-151006

    Article  CAS  PubMed  Google Scholar 

  48. Cavailles C, Berr C, Helmer C, Gabelle A, Jaussent I, Dauvilliers Y. Complaints of daytime sleepiness, insomnia, hypnotic use, and risk of dementia: a prospective cohort study in the elderly. Alzheimers Res Ther. 2022;14(1):12. https://doi.org/10.1186/s13195-021-00952-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD. Management of Chronic Insomnia Disorder in Adults: A Clinical Practice Guideline From the American College of Physicians. Ann Intern Med. 2016;165(2):125–33. https://doi.org/10.7326/m15-2175

    Article  PubMed  Google Scholar 

  50. Correll CU, Cortese S, Croatto G, Monaco F, Krinitski D, Arrondo G, et al. Efficacy and acceptability of pharmacological, psychosocial, and brain stimulation interventions in children and adolescents with mental disorders: an umbrella review. World Psychiatry. 2021;20(2):244–75. https://doi.org/10.1002/wps.20881

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krystal AD, Prather AA, Ashbrook LH. The assessment and management of insomnia: an update. World Psychiatry. 2019;18(3):337–52. https://doi.org/10.1002/wps.20674

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sweetman A, Putland S, Lack L, McEvoy RD, Adams R, Grunstein R, et al. The effect of cognitive behavioural therapy for insomnia on sedative-hypnotic use: A narrative review. Sleep Med Rev. 2021;56:101404. https://doi.org/10.1016/j.smrv.2020.101404

    Article  PubMed  Google Scholar 

  53. Fang J, Li YH, Li XH, Chen WW, He J, Xue MZ. Effects of melatonin on expressions of β-amyloid protein and S100β in rats with senile dementia. Eur Rev Med Pharmacol Sci. 2018;22(21):7526–32. https://doi.org/10.26355/eurrev_201811_16294

    CAS  PubMed  Google Scholar 

  54. Chen C, Yang C, Wang J, Huang X, Yu H, Li S, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res. 2021;71(4):e12774. https://doi.org/10.1111/jpi.12774

    Article  CAS  PubMed  Google Scholar 

  55. Dubovsky SL, Marshall D. Benzodiazepines Remain Important Therapeutic Options in Psychiatric Practice. Psychother Psychosom. 2022;91(5):307–34. https://doi.org/10.1159/000524400

    Article  PubMed  Google Scholar 

  56. Duan Y, Wei J, Geng W, Jiang J, Zhao X, Li T, et al. The effect of short-term use of benzodiazepines on cognitive function of major depressive disorder patients being treated with antidepressants. J Affect Disord. 2019;256:1–7. https://doi.org/10.1016/j.jad.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  57. Trifirò G, Spina E. Age-related changes in pharmacodynamics: focus on drugs acting on central nervous and cardiovascular systems. Curr Drug Metab. 2011;12(7):611–20. https://doi.org/10.2174/138920011796504473

    Article  PubMed  Google Scholar 

  58. Yonkers KA, Kando JC, Cole JO, Blumenthal S. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am J Psychiatry. 1992;149(5):587–95. https://doi.org/10.1176/ajp.149.5.587

    Article  CAS  PubMed  Google Scholar 

  59. Tan S, Metzger DB, Jung ME. Chronic benzodiazepine suppresses translocator protein and elevates amyloid beta in mice. Pharmacol Biochem Behav. 2018;172:59–67. https://doi.org/10.1016/j.pbb.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  60. Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A. 2002;99(1):455–60. https://doi.org/10.1073/pnas.012467899

    Article  CAS  PubMed  Google Scholar 

  61. Soto PL, Ator NA, Rallapalli SK, Biawat P, Clayton T, Cook JM, et al. Allosteric modulation of GABA(A) receptor subtypes:effects on visual recognition and visuospatial working memory in rhesus monkeys [corrected]. Neuropsychopharmacology. 2013;38(11):2315–25. https://doi.org/10.1038/npp.2013.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jacob TC, Michels G, Silayeva L, Haydon J, Succol F, Moss SJ. Benzodiazepine treatment induces subtype-specific changes in GABA(A) receptor trafficking and decreases synaptic inhibition. Proc Natl Acad Sci U S A. 2012;109(45):18595–600. https://doi.org/10.1073/pnas.1204994109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 2004;101(10):3662–7. https://doi.org/10.1073/pnas.0307231101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL. Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature. 2003;421(6920):272–5. https://doi.org/10.1038/nature01280

    Article  CAS  PubMed  Google Scholar 

  65. Griffin CE, 3rd, Kaye AM, Bueno FR, Kaye AD. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J. 2013;13(2):214–23.

    PubMed  PubMed Central  Google Scholar 

  66. He Q, Chen X, Wu T, Li L, Fei X. Risk of Dementia in Long-Term Benzodiazepine Users: Evidence from a Meta-Analysis of Observational Studies. J Clin Neurol. 2019;15(1):9–19. https://doi.org/10.3988/jcn.2019.15.1.9

    Article  PubMed  Google Scholar 

  67. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. Jama. 2002;288(12):1475–83. https://doi.org/10.1001/jama.288.12.1475

    Article  PubMed  Google Scholar 

  68. Taragano FE, Allegri RF, Krupitzki H, Sarasola DR, Serrano CM, Loñ L, et al. Mild behavioral impairment and risk of dementia: a prospective cohort study of 358 patients. J Clin Psychiatry. 2009;70(4):584–92. https://doi.org/10.4088/jcp.08m04181

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen PL, Lee WJ, Sun WZ, Oyang YJ, Fuh JL. Risk of dementia in patients with insomnia and long-term use of hypnotics: a population-based retrospective cohort study. PLoS One. 2012;7(11):e49113. https://doi.org/10.1371/journal.pone.0049113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding: This study was supported by grants from the National Natural Science Foundation of China (82001136 and 81901121). This work was supported by grants from the National Natural Science Foundation of China (82001136) and Taishan Young Scholarship.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Dr. Wei Xu: conceptualization and design of the study and revision of the manuscript. Dr. Jia-Hui Hou: analysis of the data, drafting, and revision of the manuscript, and preparing all the figures. Dr. Chen-Chen Tan: extraction of data and revision of the manuscript. Dr. Shi-Li Sun, Dr Yi-Ming Huang, and Prof. Lan Tan: revision of the manuscript.

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interests: The authors declare that they have no competing interests.

Ethical standards: Not applicable.

Additional information

Data Sharing

Any data generated in the analysis process can be requested from the corresponding author.

The cohort data used in preparation for this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JH., Sun, SL., Tan, CC. et al. Relationships of Hypnotics with Incident Dementia and Alzheimer’s Disease: A Longitudinal Study and Meta-Analysis. J Prev Alzheimers Dis 11, 117–129 (2024). https://doi.org/10.14283/jpad.2023.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.78

Key words

Navigation