Skip to main content
Log in

Clinical Research Investigating Alzheimer’s Disease in China: Current Status and Future Perspectives Toward Prevention

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Based on the background of research investigating brain aging and neurodegenerative diseases in China, the present review addresses Alzheimer’s disease (AD), one of the most common types of neurodegenerative diseases, clinical research progress, and prospects for future development in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennedy B.K., S.L. Berger, A. Brunet, et al. Geroscience: linking aging to chronic disease. Cell, 2014; 159(4): 709–13. doi: https://doi.org/10.1016/j.cell.2014.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia, L., Y. Du, L. Chu, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health, 2020; 5(12): e661–e671. doi: https://doi.org/10.1016/s2468-2667(20)30185-7

    Article  PubMed  Google Scholar 

  3. Hampel, H., A. Vergallo, T. Iwatsubo, et al. Evaluation of major national dementia policies and health-care system preparedness for early medical action and implementation. Alzheimers Dement, 2022. doi: https://doi.org/10.1002/alz.12655

  4. Ren, R.J., P. Yin, Z.H. Wang, et al. Alzheimer’s disease in China, 2021. J Diagn Concepts Pract, 2021; 20(4): 317–337. doi: (in Chinese)

    Google Scholar 

  5. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement, 2021; 17(3): 327–406. doi: https://doi.org/10.1002/alz.12328

  6. Nakahori, N., M. Sekine, M. Yamada, et al. Future projections of the prevalence of dementia in Japan: results from the Toyama Dementia Survey. BMC Geriatr, 2021; 21(1): 602. doi: https://doi.org/10.1186/s12877-021-02540-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koyama, T., M. Sasaki, H. Hagiya, et al. Place of death trends among patients with dementia in Japan: a population-based observational study. Sci Rep, 2019; 9(1): 20235. doi: https://doi.org/10.1038/s41598-019-56388-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia, L., M. Quan, Y. Fu, et al. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol, 2020; 19(1): 81–92. doi: https://doi.org/10.1016/sl474-4422(19)30290-x

    Article  PubMed  Google Scholar 

  9. Collaborators, G.B.D. Global mortality from dementia: Application of a new method and results from the Global Burden of Disease Study 2019. Alzheimers Dement (N Y), 2021; 7(1): e12200. doi: https://doi.org/10.1002/trc2.12200

    Google Scholar 

  10. Ikeda, S., M. Mimura, M. Ikeda, et al. Economic Burden of Alzheimer’s Disease Dementia in Japan. J Alzheimers Dis, 2021; 81(1): 309–319. doi: https://doi.org/10.3233/JAD-210075

    Article  PubMed  PubMed Central  Google Scholar 

  11. Europe, A. Dementia in Europe Yearbook 2019-Estimating the prevalence of dementia in Europe. 2019. doi

  12. Dugger, B.N. and D.W. Dickson. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol, 2017; 9(7). doi: https://doi.org/10.1101/cshperspect.a028035

  13. Vanni, S., A. Colini Baldeschi, M. Zattoni, and G. Legname. Brain aging: A Ianus-faced player between health and neuro degeneration. J Neurosci Res, 2020; 98(2): 299–311. doi: https://doi.org/10.1002/jnr.24379

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Y., R.J. Ren, Z.L. Zhong, et al. Mutation profile of APP, PSEN1, and PSEN2 in Chinese familial Alzheimer’s disease. Neurobiol Aging, 2019; 77: 154–157. doi: https://doi.org/10.1016/j.neurobiolaging.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  15. Jia, J., E. Xu, Y. Shao, et al. One novel presenilin-1 gene mutation in a Chinese pedigree of familial Alzheimer’s disease. J Alzheimers Dis, 2005; 7(2): 119–24; discussion 173–80. doi: https://doi.org/10.3233/jad-2005-7204

    Article  CAS  PubMed  Google Scholar 

  16. Jia, L., Y. Fu, L. Shen, et al. PSEN1, PSEN2, and APP mutations in 404 Chinese pedigrees with familial Alzheimer’s disease. Alzheimers Dement, 2020; 16(1): 178–191. doi: https://doi.org/10.1002/alz.12005

    Article  PubMed  Google Scholar 

  17. Jiang, T., L. Tan, Q. Chen, et al. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging, 2016; 42: 217 e1–3. doi: https://doi.org/10.1016/j.neurobiolaging.2016.02.023

    Article  PubMed  CAS  Google Scholar 

  18. Jiao, B., B. Tang, X. Liu, et al. Mutational analysis in early-onset familial Alzheimer’s disease in Mainland China. Neurobiol Aging, 2014; 35(8): 1957 e1–6. doi: https://doi.org/10.1016/j.neurobiolaging.2014.02.014

    Article  PubMed  CAS  Google Scholar 

  19. Tang, L., W. Zeng, X. Lu, et al. Identification of APOH polymorphisms as common genetic risk factors for venous thrombosis in the Chinese population. J Thromb Haemost, 2014; 12(10): 1616–25. doi: https://doi.org/10.1111/jth.12679

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, X., Y. Chen, F.C.F. Ip, et al. Genetic and polygenic risk score analysis for Alzheimer’s disease in the Chinese population. Alzheimers Dement (Amst), 2020; 12(1): e12074. doi: https://doi.org/10.1002/dad2.12074

    Google Scholar 

  21. Yagi, R., R. Miyamoto, H. Morino, et al. Detecting gene mutations in Japanese Alzheimer’s patients by semiconductor sequencing. Neurobiol Aging, 2014; 35(7): 1780 e1–5. doi: https://doi.org/10.1016/j.neurobiolaging.2014.01.023

    Article  PubMed  CAS  Google Scholar 

  22. An, S.S., S.A. Park, E. Bagyinszky et al. A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease. Clin Interv Aging, 2016; 11: 1817–1822. doi: https://doi.org/10.2147/CIA.S116724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janssen, J.C., J.A. Beck, T.A. Campbell, et al. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology, 2003; 60(2): 235–9. doi: https://doi.org/10.1212/01.wnl.0000042088.22694.e3

    Article  CAS  PubMed  Google Scholar 

  24. Lleo, A., R. Blesa, R. Queralt, et al. Frequency of mutations in the presenilin and amyloid precursor protein genes in early-onset Alzheimer disease in Spain. Arch Neurol, 2002; 59(11): 1759–63. doi: https://doi.org/10.1001/archneur.59.11.1759

    Article  PubMed  Google Scholar 

  25. Zekanowski, C., M. Styczynska, B. Peplonska, et al. Mutations in presenilin 1, presenilin 2 and amyloid precursor protein genes in patients with early-onset Alzheimer’s disease in Poland. Exp Neurol, 2003; 184(2): 991–6. doi: https://doi.org/10.1016/S0014-4886(03)00384-4

    Article  CAS  PubMed  Google Scholar 

  26. Dong, J., W. Qin, C. Wei, et al. A Novel PSEN1 K311R Mutation Discovered in Chinese Families with Late-Onset Alzheimer’s Disease Affects Amyloid-beta Production and Tau Phosphorylation. J Alzheimers Dis, 2017; 57(2): 613–623. doi: https://doi.org/10.3233/JAD-161188

    Article  CAS  PubMed  Google Scholar 

  27. Fang, B., L. Jia, and J. Jia. Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells. Neurosci Lett, 2006; 406(1–2): 33–7. doi: https://doi.org/10.1016/j.neulet.2006.06.072

    Article  CAS  PubMed  Google Scholar 

  28. Qiu, Q., L. Jia, Q. Wang, et al. Identification of a novel PSEN1 Gly111Val missense mutation in a Chinese pedigree with early-onset Alzheimer’s disease. Neurobiol Aging, 2020; 85: 155e1–155e4. doi: https://doi.org/10.1016/j.neurobiolaging.2019.05.018

    Article  CAS  Google Scholar 

  29. Qiu, Q., L. Shen, L. Jia, et al. A Novel PSEN1 M139L Mutation Found in a Chinese Pedigree with Early-Onset Alzheimer’s Disease Increases Abeta42/Abeta40 ratio. J Alzheimers Dis, 2019; 69(1): 199–212. doi: https://doi.org/10.3233/JAD-181291

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Q., J. Jia, W. Qin, et al. A Novel AbetaPP M722K Mutation Affects Amyloid-beta Secretion and Tau Phosphorylation and May Cause Early-Onset Familial Alzheimer’s Disease in Chinese Individuals. J Alzheimers Dis, 2015; 47(1): 157–65. doi: https://doi.org/10.3233/JAD-143231

    Article  PubMed  CAS  Google Scholar 

  31. Rong, Z., B. Cheng, L. Zhong, et al. Activation of FAK/Rac1/Cdc42-GTPase signaling ameliorates impaired microglial migration response to Abeta42 in triggering receptor expressed on myeloid cells 2 loss-of-function murine models. FASEB J, 2020; 34(8): 10984–10997. doi: https://doi.org/10.1096/fj.202000550RR

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Y., X. Wu, X. Li, et al. TREM2 Is a Receptor for beta-Amyloid that Mediates Microglial Function. Neuron, 2018; 97(5): 1023–1031 e7. doi: https://doi.org/10.1016/j.neuron.2018.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, L., Z. Wang, D. Wang, et al. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener, 2018; 13(1): 15. doi: https://doi.org/10.1186/sl3024-018-0247-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhong, L., Y. Xu, R. Zhuo, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun, 2019; 10(1): 1365. doi: https://doi.org/10.1038/s41467-019-09118-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhou, X., Y. Chen, K.Y. Mok, et al. Non-coding variability at the APOE locus contributes to the Alzheimer’s risk. Nat Commun, 2019; 10(1): 3310. doi: https://doi.org/10.1038/s41467-019-10945-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu, C.C., C.C. Liu, T. Kanekiyo, H. Xu, and G. Bu. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol, 2013; 9(2): 106–18. doi: https://doi.org/10.1038/nrneurol.2012.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xia, Y, Z.H. Wang, J. Zhang, et al. C/EBPbeta is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer’s disease. Mol Psychiatry, 2020. doi: https://doi.org/10.1038/s41380-020-00956-4

  38. Yin, J., M. Nielsen, T. Carcione, S. Li, and J. Shi. Apolipoprotein E regulates mitochondrial function through the PGC-1alpha-sirtuin 3 pathway. Aging (Albany NY), 2019; 11(23): 11148–11156. doi: https://doi.org/10.18632/aging.102516

    Article  CAS  Google Scholar 

  39. Yin, J., E.M. Reiman, T.G. Beach, et al. Effect of ApoE isoforms on mitochondria in Alzheimer disease. Neurology, 2020; 94(23): e2404–e2411. doi: https://doi.org/10.1212/WNL.0000000000009582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X., J. Zhang, D. Li, et al. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron, 2021; 109(6): 957–970 e8. doi: https://doi.org/10.1016/j.neuron.2021.01.005

    Article  CAS  PubMed  Google Scholar 

  41. Gan, C.L., T. Zhang, and T.H. Lee. The Genetics of Alzheimer’s Disease in the Chinese Population. Int J Mol Sci, 2020; 21(7). doi: https://doi.org/10.3390/ijms21072381

  42. Wang, J.Z., Z.H. Wang, and Q. Tian. Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer’s disease. Neurosci Bull, 2014; 30(2): 359–66. doi: https://doi.org/10.1007/s12264-013-1415-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu, S.J., A.H. Zhang, H.L. Li, et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem, 2003; 87(6): 1333–44. doi: https://doi.org/10.1046/j.l471-4159.2003.02070.x

    Article  CAS  PubMed  Google Scholar 

  44. Ge, S., E.L. Goh, K.A. Sailor, et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006; 439(7076): 589–93. doi: https://doi.org/10.1038/nature04404

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y.J., Y.F. Xu, Y.H. Liu, et al. Peroxynitrite induces Alzheimer-like tau modifications and accumulation in rat brain and its underlying mechanisms. FASEB J, 2006; 20(9): 1431–42. doi: https://doi.org/10.1096/fj.05-5223com

    Article  CAS  PubMed  Google Scholar 

  46. Li, H.L., H.H. Wang, S.J. Liu, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A, 2007; 104(9): 3591–6. doi: https://doi.org/10.1073/pnas.0609303104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, X.H., B.L. Lv, J.Z. Xie, et al. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging, 2012; 33(7): 1400–10. doi: https://doi.org/10.1016/j.neurobiolaging.2011.02.003

    Article  PubMed  CAS  Google Scholar 

  48. Zhao, C., W. Deng, and F.H. Gage. Mechanisms and functional implications of adult neurogenesis. Cell, 2008; 132(4): 645–60. doi: https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  49. Moreno-Jimenez, E.P., M. Flor-Garcia, J. Terreros-Roncal, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med, 2019; 25(4): 554–560. doi: https://doi.org/10.1038/s41591-019-0375-9

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, X., Y. Mei, Y. He, et al. Ablating Adult Neural Stem Cells Improves Synaptic and Cognitive Functions in Alzheimer Models. Stem Cell Reports, 2021; 16(1): 89–105. doi: https://doi.org/10.1016/j.stemcr.2020.12.003

    Article  PubMed  CAS  Google Scholar 

  51. Sun, B., B. Halabisky Y. Zhou, et al. Imbalance between GABAergic and Glutamatergic Transmission Impairs Adult Neurogenesis in an Animal Model of Alzheimer’s Disease. Cell Stem Cell, 2009; 5(6): 624–33. doi: https://doi.org/10.1016/j.stem.2009.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, J., H.L. Li, N. Tian, et al. Interneuron Accumulation of Phosphorylated tau Impairs Adult Hippocampal Neurogenesis by Suppressing GABAergic Transmission. Cell Stem Cell, 2020; 26(3): 331–345 e6. doi: https://doi.org/10.1016/j.stem.2019.12.015

    Article  CAS  PubMed  Google Scholar 

  53. Song, J., J. Sun, J. Moss, et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosa, 2013; 16(12): 1728–30. doi: https://doi.org/10.1038/nn.3572

    Article  CAS  Google Scholar 

  54. Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002; 298(5594): 789–91. doi: https://doi.org/10.1126/science.1074069

    Article  CAS  PubMed  Google Scholar 

  55. Palop, J.J. and L. Mucke. Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin? Neuromolecular Med, 2010; 12(1): 48–55. doi: https://doi.org/10.1007/s12017-009-8097-7

    Article  CAS  PubMed  Google Scholar 

  56. Jiang, S., Y. Li, C. Zhang, et al. M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci Bull, 2014; 30(2): 295–307. doi: https://doi.org/10.1007/s12264-013-1406-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Y., Z. Chen, Y. Gao, et al. Synaptic Adhesion Molecule Pcdh-gammaC5 Mediates Synaptic Dysfunction in Alzheimer’s Disease. J Neurosci, 2017; 37(38): 9259–9268. doi: https://doi.org/10.1523/JNEUROSCI.1051-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meng, J., L. Han, N. Zheng, et al. TMEM59 Haploinsufficiency Ameliorates the Pathology and Cognitive Impairment in the 5xFAD Mouse Model of Alzheimer’s Disease. Front Cell Dev Biol, 2020; 8: 596030. doi: https://doi.org/10.3389/fcell.2020.596030

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao, D., J. Meng, Y. Zhao, et al. RPS23RG1 Is Required for Synaptic Integrity and Rescues Alzheimer’s Disease-Associated Cognitive Deficits. Biol Psychiatry, 2019; 86(3): 171–184. doi: https://doi.org/10.1016/j.biopsych.2018.08.009

    Article  PubMed  CAS  Google Scholar 

  60. Li, Y, H. Sun, Z. Chen, et al. Implications of GABAergic Neurotransmission in Alzheimer’s Disease. Front Aging Neurosci, 2016; 8: 31. doi: https://doi.org/10.3389/fnagi.2016.00031

    PubMed  PubMed Central  Google Scholar 

  61. Bi, D., L. Wen, Z. Wu, and Y. Shen. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimers Dement, 2020; 16(9): 1312–1329. doi: https://doi.org/10.1002/alz.12088

    Article  PubMed  Google Scholar 

  62. Tong, L.M., B. Djukic, C. Arnold, et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Abeta accumulation. J Neurosci, 2014; 34(29): 9506–15. doi: https://doi.org/10.1523/JNEUROSCI.0693-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang, C., R. Najm, Q. Xu, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med, 2018; 24(5): 647–657. doi: https://doi.org/10.1038/s41591-018-0004-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, Z.J. and A. Paul. The diversity of GABAergic neurons and neural communication elements. Nat Rev Neurosci, 2019; 20(9): 563–572. doi: https://doi.org/10.1038/s41583-019-0195-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H., L. Zhang, D. Zhou, et al. Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer’s disease. Neurobiol Dis, 2017; 106: 171–180. doi: https://doi.org/10.1016/j.nbd.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  66. Li, Y, K. Zhu, N. Li, et al. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res Ther, 2021; 13(1): 114. doi: https://doi.org/10.1186/s13195-021-00859-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, H., H. Yan, N. Tang, et al. Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nat Commun, 2017; 8(1): 1676. doi: https://doi.org/10.1038/s41467-017-01943-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shu, S., H. Zhu, N. Tang, et al. Selective Degeneration of Entorhinal-CA1 Synapses in Alzheimer’s Disease via Activation of DAPK1. J Neurosci, 2016; 36(42): 10843–10852. doi: https://doi.org/10.1523/JNEUROSCI.2258-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, M., Q. Zhang, Z. Wu, et al. Mossy cell synaptic dysfunction causes memory imprecision via miR-128 inhibition of STIM2 in Alzheimer’s disease mouse model. Aging Cell, 2020; 19(5): e13144. doi: https://doi.org/10.1111/acel.13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, D., H. Yan, J. Zhou, et al. A circuit view of deep brain stimulation in Alzheimer’s disease and the possible mechanisms. Mol Neurodegener, 2019; 14(1): 33. doi: https://doi.org/10.1186/s13024-019-0334-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wu, K.M., Y.R. Zhang, Y.Y. Huang, et al. The role of the immune system in Alzheimer’s disease. Ageing Res Rev, 2021; 70: 101409. doi: https://doi.org/10.1016/j.arr.2021.101409

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, R., W. Hu, J. Tsai, W. Li, and W.B. Gan. Microglia limit the expansion of beta-amyloid plaques in a mouse model of Alzheimer’s disease. Mol Neurodegener, 2017; 12(1): 47. doi: https://doi.org/10.1186/s13024-017-0188-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Pan, J., N. Ma, B. Yu, W. Zhang, and J. Wan. Transcriptomic profiling of microglia and astrocytes throughout aging. J Neuroinflammation, 2020; 17(1): 97. doi: https://doi.org/10.1186/s12974-020-01774-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lau, S.F., C. Chen, W.Y. Fu, et al. IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer’s Disease. Cell Rep, 2020; 31(3): 107530. doi: https://doi.org/10.1016/j.celrep.2020.107530

    Article  CAS  PubMed  Google Scholar 

  75. Fang, Y., J. Wang, L. Yao, et al. The adhesion and migration of microglia to beta-amyloid (Abeta) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation, 2018; 15(1): 210. doi: https://doi.org/10.1186/s12974-018-1250-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wang, J., X. Qin, H. Sun, et al. Nogo receptor impairs the clearance of fibril amyloid-beta by microglia and accelerates Alzheimer’s-like disease progression. Aging Cell, 2021; 20(12): e13515. doi: https://doi.org/10.1111/acel.13515

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fang, Y, L. Yao, C. Li, et al. The blockage of the Nogo/NgR signal pathway in microglia alleviates the formation of Abeta plaques and tau phosphorylation in APP/PS1 transgenic mice. J Neuroinflammation, 2016; 13(1): 56. doi: https://doi.org/10.1186/s12974-016-0522-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Atagi, Y, C.C. Liu, M.M. Painter, et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem, 2015; 290(43): 26043–50. doi: https://doi.org/10.1074/jbc.M115.679043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng, H., L. Jia, C.C. Liu, et al. TREM2 Promotes Microglial Survival by Activating Wnt/beta-Catenin Pathway. J Neurosci, 2017; 37(7): 1772–1784. doi: https://doi.org/10.1523/JNEUROSCI.2459-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhong, L., X.F. Chen, T. Wang, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med, 2017; 214(3): 597–607. doi: https://doi.org/10.1084/jem.20160844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang, T., Y.D. Zhang, Q. Gao, et al. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol, 2016; 132(5): 667–683. doi: https://doi.org/10.1007/s00401-016-1622-5

    Article  CAS  PubMed  Google Scholar 

  82. Ofengeim, D., S. Mazzitelli, Y. Ito, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci U S A, 2017; 114(41): E8788–E8797. doi: https://doi.org/10.1073/pnas.1714175114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan, J., P. Amin, and D. Ofengeim. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci, 2019; 20(1): 19–33. doi: https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dai, L., Q. Wang, X. Lv, et al. Elevated beta-secretase 1 expression mediates CD4(+) T cell dysfunction via PGE2 signalling in Alzheimer’s disease. Brain Behav Immun, 2021; 98: 337–348. doi: https://doi.org/10.1016/j.bbi.2021.08.234

    Article  CAS  PubMed  Google Scholar 

  85. Wang, X., G. Sun, T. Feng, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res, 2019; 29(10): 787–803. doi: https://doi.org/10.1038/s41422-019-0216-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, Y.H., J. Wang, Q.X. Li, et al. Association of naturally occurring antibodies to beta-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer’s disease. Sci Adv, 2021; 7(1). doi: https://doi.org/10.1126/sciadv.abb0457

  87. Yang, L., K. Lindholm, Y. Konishi, R. Li, and Y. Shen. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci, 2002; 22(8): 3025–32. doi: 20026317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, R., L. Yang, K. Lindholm, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci, 2004; 24(7): 1760–71. doi: https://doi.org/10.1523/JNEUROSCI.4580-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He, P., Q. Liu, J. Wu, and Y. Shen. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J, 2012; 26(1): 334–45. doi: https://doi.org/10.1096/fj.11-192716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, H., P. He, J. Xie, et al. Genetic deletion of TNFRII gene enhances the Alzheimer-like pathology in an APP transgenic mouse model via reduction of phosphorylated IkappaBalpha. Hum Mol Genet, 2014; 23(18): 4906–18. doi: https://doi.org/10.1093/hmg/ddu206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Robinson, L., E. Tang, and J.P. Taylor. Dementia: timely diagnosis and early intervention. BMJ, 2015; 350: h3029. doi: https://doi.org/10.1136/bmj.h3029

    Article  PubMed  PubMed Central  Google Scholar 

  92. Teunissen, C.E., I.M.W. Verberk, E.H. Thijssen, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol, 2022; 21(1): 66–77. doi: https://doi.org/10.1016/S1474-4422(21)00361-6

    Article  CAS  PubMed  Google Scholar 

  93. Yang, X.Y., X.H. Hou, Y.L. Bi, et al. Anaemia and cerebrospinal fluid biomarkers of Alzheimer’s pathology in cognitively normal elders: the CABLE study. BMC Neurol, 2021; 21(1): 454. doi: https://doi.org/10.1186/sl2883-021-02487-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiao, B., H. Liu, L. Guo, et al. Performance of Plasma Amyloid beta, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer’s Disease in South China. Front Aging Neurosci, 2021; 13: 749649. doi: https://doi.org/10.3389/fnagi.2021.749649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, X., Z. Xiao, J. Yi, et al. Development of a Plasma Biomarker Diagnostic Model Incorporating Ultrasensitive Digital Immunoassay as a Screening Strategy for Alzheimer Disease in a Chinese Population. Clin Chem, 2021; 67(12): 1628–1639. doi: https://doi.org/10.1093/clinchem/hvab192

    Article  PubMed  Google Scholar 

  96. Xiao, Z., X. Wu, W. Wu, et al. Plasma biomarker profiles and the correlation with cognitive function across the clinical spectrum of Alzheimer’s disease. Alzheimers Res Ther, 2021; 13(1): 123. doi: https://doi.org/10.1186/sl3195-021-00864-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shen, Y, H. Wang, Q. Sun, et al. Increased Plasma Beta-Secretase 1 May Predict Conversion to Alzheimer’s Disease Dementia in Individuals With Mild Cognitive Impairment. Biol Psychiatry, 2018; 83(5): 447–455. doi: https://doi.org/10.1016/j.biopsych.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, Y., X. Zhou, F.C. Ip, et al. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging. Alzheimers Dement, 2022; 18(1): 88–102. doi: https://doi.org/10.1002/alz.12369

    Article  CAS  PubMed  Google Scholar 

  99. Serrano-Pozo, A., M.P. Frosch, E. Masliah, and B.T. Hyman. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med, 2011; 1(1): a006189. doi: https://doi.org/10.1101/cshperspect.a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jia, L., Q. Qiu, H. Zhang, et al. Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement, 2019; 15(8): 1071–1080. doi: https://doi.org/10.1016/j.jalz.2019.05.002

    Article  PubMed  Google Scholar 

  101. Olsson, B., R. Lautner, U. Andreasson, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol, 2016; 15(7): 673–684. doi: https://doi.org/10.1016/S1474-4422(16)00070-3

    Article  CAS  PubMed  Google Scholar 

  102. Xu, W., S.D. Han, C. Zhang, et al. The FAM171A2 gene is a key regulator of progranulin expression and modifies the risk of multiple neurodegenerative diseases. Sci Adv, 2020; 6(43). doi: https://doi.org/10.1126/sciadv.abb3063

  103. Jia, L., Y. Du, L. Chu, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health, 2020; 5(12): e661–e671. doi: https://doi.org/10.1016/S2468-2667(20)30185-7

    Article  PubMed  Google Scholar 

  104. McKhann, G., D. Drachman, M. Folstein, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 1984; 34(7): 939–44. doi: https://doi.org/10.1212/wnl.34.7.939

    Article  CAS  PubMed  Google Scholar 

  105. Jack, C.R., Jr., M.S. Albert, D.S. Knopman, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 2011; 7(3): 257–62. doi: https://doi.org/10.1016/j.jalz.2011.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jack, C.R., Jr., D.A. Bennett, K. Blennow, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement, 2018; 14(4): 535–562. doi: https://doi.org/10.1016/j.jalz.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lv, X., M. Zhao, T. Li, et al. Effects of an Enhanced Training on Primary Care Providers Knowledge, Attitudes, Service and Skills of Dementia Detection: A Cluster Randomized Trial. Front Neurol, 2021; 12: 651826. doi: https://doi.org/10.3389/fneur.2021.651826

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jia, J., X. Zuo, X.F. Jia, et al. Diagnosis and treatment of dementia in neurology outpatient departments of general hospitals in China. Alzheimers Dement, 2016; 12(4): 446–53. doi: https://doi.org/10.1016/j.jalz.2015.06.1892

    Article  PubMed  Google Scholar 

  109. Li, S., Z. Wu, and W. Le. Traditional Chinese medicine for dementia. Alzheimers Dement, 2021; 17(6): 1066–1071. doi: https://doi.org/10.1002/alz.12258

    Article  PubMed  Google Scholar 

  110. Ong, W.Y., Y.J. Wu, T. Farooqui, and A.A. Farooqui. Qi Fu Yin-a Ming Dynasty Prescription for the Treatment of Dementia. Mol Neurobiol, 2018; 55(9): 7389–7400. doi: https://doi.org/10.1007/s12035-018-0908-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, T., W. Kuang, W. Chen, et al. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res Ther, 2020; 12(1): 110. doi: https://doi.org/10.1186/s13195-020-00678-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xiao, S., P. Chan, T. Wang, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther, 2021; 13(1): 62. doi: https://doi.org/10.1186/s13195-021-00795-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Deng, M. and X.F. Wang. Acupuncture for amnestic mild cognitive impairment: a meta-analysis of randomised controlled trials. Acupunct Med, 2016; 34(5): 342–348. doi: https://doi.org/10.1136/acupmed-2015-010989

    Article  PubMed  Google Scholar 

  114. Kim, J.H., M.R. Cho, J.C. Shin, G.C. Park, and J.S. Lee. Factors contributing to cognitive improvement effects of acupuncture in patients with mild cognitive impairment: a pilot randomized controlled trial. Trials, 2021; 22(1): 341. doi: https://doi.org/10.1186/s13063-021-05296-4

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zheng, W., Z. Su, X. Liu, et al. Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer disease as measured by resting-state fMRI. PLoS One, 2018; 13(5): e0196933. doi: https://doi.org/10.1371/journal.pone.0196933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences (QYZDY-SSW-SMC012 and XDB39000000); the National Natural Sciences Foundation of China (82030034; 92149304; 32100796); the Fundamental Research Funds for the Central Universities (YD2070002003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shen.

Ethics declarations

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Additional information

How to cite this article: Q. Wang, F. Gao, L. Dai, et al. Clinical Research Investigating Alzheimer’s Disease in China: Current Status and Future Perspectives Toward Prevention. J Prev Alz Dis 2022;3(9):532-541; https://doi.org/10.14283/jpad.2022.46

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gao, F., Dai, L. et al. Clinical Research Investigating Alzheimer’s Disease in China: Current Status and Future Perspectives Toward Prevention. J Prev Alzheimers Dis 9, 532–541 (2022). https://doi.org/10.14283/jpad.2022.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.46

Key words

Navigation