Skip to main content
Log in

Immunotherapy for Alzheimer’s Disease: Current Scenario and Future Perspectives

  • Reviews
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a global health concern owing to its complexity, which often poses a great challenge to the development of therapeutic approaches. No single theory has yet accounted for the various risk factors leading to the pathological and clinical manifestations of dementiatype AD. Therefore, treatment options targeting various molecules involved in the pathogenesis of the disease have been unsuccessful. However, the exploration of various immunotherapeutic avenues revitalizes hope after decades of disappointment. The hallmark of a good immunotherapeutic candidate is not only to remove amyloid plaques but also to slow cognitive decline. In line with this, both active and passive immunotherapy have shown success and limitations. Recent approval of aducanumab for the treatment of AD demonstrates how close passive immunotherapy is to being successful. However, several major bottlenecks still need to be resolved. This review outlines recent successes and challenges in the pursuit of an AD vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. LoGiudice D, & Watson R. Dementia in older people: an update. Internal Medicine Journal 2014; 44(11):1066–1073. https://doi.org/10.1111/imj.12572

    Article  CAS  PubMed  Google Scholar 

  2. Mayeux R, & Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 2012; 2(8):a006239. https://doi.org/10.1101/cshperspect.a006239

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jha NK, Jha SK, Kar R, Nand P, Swati K & Goswami VK. Nuclear Factor-Kappa β as a therapeutic target for Alzheimer’s disease. J Neurochemistry 2019; 150(2):113–137. doi:https://doi.org/10.1111/jnc.14687

    Article  CAS  Google Scholar 

  4. Uversky VN. Intrinsic Disorder in Proteins Associated with Neurodegenerative Diseases. In: Ovádi J., Orosz F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases. Focus on Structural Biology, vol 2009; 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9434-7_2

  5. Imtiaz B, Tolppanen AM, Kivipelto M, Soininen H. Future directions in Alzheimer’s disease from risk factors to prevention. Biochemical Pharmacology 2014; 88(4):661–670. https://doi.org/10.1016/j.bcp.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Archives of Medical Research 2012; 43(8):600–608. https://doi.org/10.1016/j.arcmed.2012.11.003

    Article  PubMed  Google Scholar 

  7. Alves RP, Yang MJ, Batista MT, Ferreira LC. Alzheimer’s disease: is a vaccine possible?. Brazilian JMedical Biological Research 2014; 47(6):438–444. https://doi.org/10.1590/1414-431x20143434

    Article  CAS  Google Scholar 

  8. Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association (2012; 8(2):131–168. https://doi.org/10.1016/j.jalz.2012.02.001

    Article  Google Scholar 

  9. Hallock P, Thomas MA. Integrating the Alzheimer’s disease proteome and transcriptome: a comprehensive network model of a complex disease. Omics: AJournal of Integrative Biology 2012;16(1–2):37–49. https://doi.org/10.1089/omi.2011.0054

    Article  CAS  Google Scholar 

  10. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology 2014; 88(4): 640–651. https://doi.org/10.1016/j.bcp.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson VW. Alzheimer’s disease: Review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem and Mol Biol 2014; 142:99–106. https://doi.org/10.1016/j.jsbmb.2013.05.010

    Article  CAS  Google Scholar 

  12. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The New England Journal of Medicine 2012; 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jack CR, JrKnopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC & Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology 2010; 9(1):119–128. https://doi.org/10.1016/S1474-4422(09)70299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot?. Annals of Neurology 2019; 85(3):303–315. https://doi.org/10.1002/ana.25410

    Article  PubMed  Google Scholar 

  15. Haass C. New hope for Alzheimer disease vaccine. Nature medicine 2002; 8(11):1195–1196. https://doi.org/10.1038/nm1102-1195

    Article  CAS  PubMed  Google Scholar 

  16. Schnabel J. Vaccines:Chasing the dream. Nature 2011; 475(7355):S18–S19. doi:https://doi.org/10.1038/475s18a

    Article  CAS  PubMed  Google Scholar 

  17. Sterner RM, Takahashi PY & Yu Ballard AC. Active Vaccines for Alzheimer Disease Treatment. Journal of the American Medical Directors Association 2016; 17(9):862.e11–862.e15. doi:https://doi.org/10.1016/j.jamda.2016.06.009

    Article  Google Scholar 

  18. Alzheimer A, Stelzmann RA, Schnitzlein HN Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eineeigenartigeErkankung der Hirnrinde”. Clinical Anatomy (New York, N.Y.) 1995; 8(6):429–431. https://doi.org/10.1002/ca.980080612

    Article  CAS  Google Scholar 

  19. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (New York, N.Y.) 2002; 297(5580):353–356. https://doi.org/10.1126/science.1072994

    Article  CAS  Google Scholar 

  20. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000):631–639. https://doi.org/10.1038/nature02621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Gassen G, Annaert W, Van Broeckhoven C. Binding partners of Alzheimer’sdisease proteins: are they physiologically relevant? Neurobiol Dis 2000; 7(3):135–151.

    Article  CAS  PubMed  Google Scholar 

  22. Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology 1999; 45(3):358–368. https://doi.org/10.1002/1531-8249(199903)45:3<358::aid-ana12>3.0.co;2-x

    Article  CAS  PubMed  Google Scholar 

  23. Berg L, McKeel DW, JrMiller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM, Price JL, Gearing M, Mirra SS & Saunders AM. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Archives of Neurology 1998; 55(3): 326–335. https://doi.org/10.1001/archneur.55.3.326

    Article  CAS  PubMed  Google Scholar 

  24. Lambracht-Washington D & Rosenberg RN. Advances in the development of vaccines for Alzheimer’s disease. Discov Med 2013; 15(84):319–326.

    PubMed  PubMed Central  Google Scholar 

  25. Lannfelt L, Relkin NR & Siemers ER. Amyloid-β-directed immunotherapy for Alzheimer’s disease. Journal of Internal Medicine 2014; 275(3):284–295. doi:https://doi.org/10.1111/joim.12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin M, Shepardson N, Yang T, Chen G, Walsh D & Selkoe DJ. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proceedings of the National Academy of Sciences, U.S.A 2011; 108(14):5819–5824.

    Article  CAS  Google Scholar 

  27. Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL & La Ferla FM. Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. The Journal of Biological Chemistry 2006; 281(3):1599–1604. https://doi.org/10.1074/jbc.M507892200

    CAS  PubMed  Google Scholar 

  28. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ & Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416(6880):535–539. https://doi.org/10.1038/416535a

    Article  CAS  PubMed  Google Scholar 

  29. Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE & Moir RD. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Science Translational Medicine 2016; 8(340):340ra72. https://doi.org/10.1126/scitranslmed.aaf1059

    Article  PubMed  CAS  Google Scholar 

  30. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley L & Larson EB. Dementia and Alzheimer disease incidence: a prospective cohort study. Archives of Neurology 2002; 59(11):1737–1746. https://doi.org/10.1001/archneur.59.11.1737

    Article  PubMed  Google Scholar 

  31. Launer LJ, Andersen K, Dewey ME, Letenneur L, Ott A, et al. Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology 1999; 52(1):78–84. https://doi.org/10.1212/wnl.52.1.78

    Article  CAS  PubMed  Google Scholar 

  32. Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallania FL, Mitra RD, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PloS one 2012; 7(2):e31039. https://doi.org/10.1371/journal.pone.0031039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics 1999; 65(3):664–670. https://doi.org/10.1086/302553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wijsman EM, Daw EW, Yu X, Steinbart EJ, Nochlin D, Bird TD & Schellenberg GD. APOE and other loci affect age-at-onset in Alzheimer’s disease families with PS2 mutation. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The official publication of the International Society of Psychiatric Genetics 2005; 132B(1):14–20. https://doi.org/10.1002/ajmg.b.30087

    Article  Google Scholar 

  35. Lopera F, Ardilla A, Martínez A, Madrigal L, Arango-Viana JC, Lemere CA, Arango-Lasprilla JC et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 1997; 277(10):793–799.

    Article  CAS  PubMed  Google Scholar 

  36. Bretsky PM, Buckwalter JG, Seeman TE, Miller CA, Poirier J, Schellenberg GD, Finch CE & Henderson VW. Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Disease and Associated Disorders 1999; 13(4):216–221. https://doi.org/10.1097/00002093-199910000-00007

    Article  CAS  PubMed  Google Scholar 

  37. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997; 278(16):1349–1356.

    Article  CAS  PubMed  Google Scholar 

  38. Evans CF, Davtyan H, Petrushina I, Hovakimyan A, Davtyan A, Hannaman D, Cribbs DH, Agadjanyan MG & Ghochikyan A. Epitope-based DNA vaccine for Alzheimer’s disease: translational study in macaques. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 2014; 10(3):284–295. https://doi.org/10.1016/j.jalz.2013.04.505

    Article  Google Scholar 

  39. van Dyck CH. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biological Psychiatry 2018; 83(4):311–319. https://doi.org/10.1016/j.biopsych.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  40. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E & Slutsky I. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience 2009; 12(12):1567–1576. https://doi.org/10.1038/nn.2433

    Article  CAS  PubMed  Google Scholar 

  41. Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiology of Disease 2004; 15(1):11–20. https://doi.org/10.1016/j.nbd.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  42. Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer’s disease. Nature Reviews Immunology 2006; 6(5):404–416. doi:https://doi.org/10.1038/nri1843

    Article  CAS  PubMed  Google Scholar 

  43. Hock C, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz RC, Davey G, Moritz E, Nitsch RM. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nature Medicine 2002; 8(11):1270–1275. https://doi.org/10.1038/nm783

    Article  CAS  PubMed  Google Scholar 

  44. Zlokovic BV. Clearing amyloid through the blood-brain barrier. Journal of Neurochemistry 2004; 89(4):807–811. https://doi.org/10.1111/j.1471-4159.2004.02385.x

    Article  CAS  PubMed  Google Scholar 

  45. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine 2003; 9(7):907–913. https://doi.org/10.1038/nm890

    Article  CAS  PubMed  Google Scholar 

  46. Arbel M, Yacoby I, Solomon B. Inhibition of amyloid precursor protein processing by beta-secretase through site-directed antibodies. Proceedings of the National Academy of Sciences U.S.A 2005; 102(21):7718–7723. https://doi.org/10.1073/pnas.0502427102

    Article  CAS  Google Scholar 

  47. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740):173–177. https://doi.org/10.1038/22124

    Article  CAS  PubMed  Google Scholar 

  48. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1):94–101. https://doi.org/10.1212/01.WNL.0000148604.77591.67

    Article  CAS  PubMed  Google Scholar 

  49. Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JA & Boche D. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain: AJournal of Neurology 2013; 136(Pt 9):2677–2696. https://doi.org/10.1093/brain/awt210

    Article  Google Scholar 

  50. Serrano-Pozo A, William CM, Ferrer I, Uro-Coste E, Delisle MB, Maurage CA, Hock C, Nitsch RM, Masliah E, Growdon JH, Frosch MP & Hyman BT. Beneficial effect of human anti-amyloid-beta active immunization on neurite morphology and tau pathology. Brain: A Journal of Neurology 2010; 133(Pt 5):1312–1327. https://doi.org/10.1093/brain/awq056

    Article  Google Scholar 

  51. Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C & Nicoll JA. Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain: AJournal of Neurology 2008; 131 (Pt12):3299–3310. https://doi.org/10.1093/brain/awn261

    Article  CAS  Google Scholar 

  52. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interruptedtrial. Neurology 2005; 64(9):1553–1562. https://doi.org/10.1212/01.WNL.0000159740.16984.3C

    Article  CAS  PubMed  Google Scholar 

  53. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61(1):46–54. https://doi.org/10.1212/01.wnl.0000073623.84147.a8

    Article  CAS  PubMed  Google Scholar 

  54. Ferrer I, Rovira MB, Guerra MLS, Rey MJ & Costa-Jussá F. Neuropathology and Pathogenesis of Encephalitis following Amyloid β Immunization in Alzheimer’s Disease. Brain Pathology 2004; 14(1):11–20. doi:https://doi.org/10.1111/j.1750-3639.2004.tb00493.x

    Article  CAS  PubMed  Google Scholar 

  55. Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, Kieber-Emmons T, Cotman CW & Agadjanyan MG. Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. International Immunology 2003; 15(4):505–514. https://doi.org/10.1093/intimm/dxg049

    Article  CAS  PubMed  Google Scholar 

  56. Wang CY, Wang PN, Chiu MJ, Finstad CL, Lin F, Lynn S, Tai YH, De Fang X, et al. UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimer’s & Dementia (New York, N. Y.) 2017; 3(2):262–272. https://doi.org/10.1016/j.trci.2017.03.005

    Article  Google Scholar 

  57. Farlow MR, Andreasen N, Riviere ME, Vostiar I, Vitaliti A, Sovago J, Caputo A, Winblad B & Graf A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimer’s Research & Therapy 2015; 7(1):23. https://doi.org/10.1186/s13195-015-0108-3

    Article  CAS  Google Scholar 

  58. Davtyan H, Bacon A, Petrushina I, Zagorski K, Cribbs DH, Ghochikyan A & Agadjanyan MG. Immunogenicity of DNA- and recombinant protein-based Alzheimer Disease epitope vaccines. Human Vaccines & Immunotherapeutics 2014; 10(5):1248–1255. doi:https://doi.org/10.4161/hv.27882.

    Article  CAS  Google Scholar 

  59. Mantile, F., & Prisco, A. Vaccination against β-Amyloid as a Strategy for the Prevention of Alzheimer’s Disease. Biology, 2020; 9(12), 425. doi:https://doi.org/10.3390/biology9120425

    Article  CAS  PubMed Central  Google Scholar 

  60. Mamikonyan G, Necula M, Mkrtichyan M, Ghochikyan A, Petrushina I, Movsesyan N, Mina E, Kiyatkin A, Glabe CG, Cribbs DH & Agadjanyan MG. Anti-A beta 1–11 antibody binds to different beta-amyloid species, inhibits fibril formation, and disaggregates preformed fibrils but not the most toxic oligomers. The Journal of Biological Chemistry 2007; 282(31):22376–22386. https://doi.org/10.1074/jbc.M700088200

    Article  CAS  PubMed  Google Scholar 

  61. Arai H, Suzuki H, Yoshiyama T. Vanutidecridificar and the QS-21 adjuvant in Japanese subjects with mild to moderate Alzheimer’s disease: results from two phase 2 studies. Curr Alzheimer Res 2015; 12(3):242–254. doi:https://doi.org/10.2174/1567205012666150302154121. PMID: 25731629.

    Article  CAS  PubMed  Google Scholar 

  62. Pasquier F, Sadowsky C, Holstein A, Leterme G, Peng Y, Jackson N, Fox NC, et al. Two Phase 2 Multiple Ascending-Dose Studies of VanutideCridificar (ACC-001) and QS-21 Adjuvant in Mild-to-Moderate Alzheimer’s Disease. Journal of Alzheimer’s Disease: JAD 2016; 51(4):1131–1143. https://doi.org/10.3233/JAD-150376

    Article  CAS  PubMed  Google Scholar 

  63. Hull M, Sadowsky C, Arai H, Le Prince Leterme G, Holstein A, Booth K, Peng Y, Yoshiyama T, Suzuki H, Ketter N, Liu E & Ryan JM. Long-Term Extensions of Randomized Vaccination Trials of ACC-001 and QS-21 in Mild to Moderate Alzheimer’s Disease. Current Alzheimer research 2017; 14(7):696–708. https://doi.org/10.2174/1567205014666170117101537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Godyń J, Jończyk J, Panek D & Malawska B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacological Reports: PR 2016; 68(1):127–138. https://doi.org/10.1016/j.pharep.2015.07.006

    Article  PubMed  CAS  Google Scholar 

  65. Kwan, P., Konno, H., Chan, K. Y., & Baum, L. Rationale for the development of an Alzheimer’s disease vaccine. Human Vaccines & Immunotherapeutics. 2019. doi:https://doi.org/10.1080/21645515.2019.1665453

  66. Schneeberger A, Hendrix S, Mandler M, Ellison N, Bürger V, Brunner M, Frölich L, et al. Results from a Phase II Study to Assess the Clinical and Immunological Activity of AFFITOPE® AD02 in Patients with Early Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease 2015; 2(2):103–114. https://doi.org/10.14283/jpad.2015.63

    CAS  PubMed  Google Scholar 

  67. Lemere CA. Immunotherapy for Alzheimer’s disease: hoops and hurdles. Molecular Neurodegeneration 2013; 8(1):36. doi:https://doi.org/10.1186/1750-1326-8-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V, Meerschman C, van der Auwera I, van Leuven F, et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proceedings of the National Academy of Sciences (U.S.A.) 2007; 104(23): 9810–9815. https://doi.org/10.1073/pnas.0703137104

    Article  CAS  Google Scholar 

  69. Yu YZ & Xu Q. Prophylactic immunotherapy of Alzheimer’s disease using recombinant amyloid-β B-cell epitope chimeric protein as subunit vaccine. Human Vaccines & Immunotherapeutics 2016; 12(11):2801–2804. https://doi.org/10.1080/21645515.2016.1197456

    Article  Google Scholar 

  70. https://www.alzforum.org/therapeutics/aci-24. Last updated 08 October 2020

  71. Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, et al. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. The Lancet Neurology 2012; 11(7):597–604. https://doi.org/10.1016/S1474-4422(12)70140-0

    Article  CAS  PubMed  Google Scholar 

  72. Lopez C, Tariot PN., Caputo A, Langbaum JB, Liu F, et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimer’s & dementia (New York, N. Y.), 2019; 5, 216–227. https://doi.org/10.1016/j.trci.2019.02.005

    Article  Google Scholar 

  73. https://www.alzforum.org/news/conference-coverage/picking-through-rubble-field-tries-salvage-bace-inhibitors 20 Dec 2019

  74. Davtyan H, Ghochikyan A, Hovakimyan A, Petrushina I, Yu J, Flyer D, Madsen PJ, Pedersen LO, Cribbs DH & Agadjanyan MG. Immunostimulant patches containing Escherichia coli LT enhance immune responses to DNA- and recombinant protein-based Alzheimer’s disease vaccines. Journal of Neuroimmunology 2014; 268(1–2):50–57. https://doi.org/10.1016/j.jneuroim.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, López-Deber MP, Reis P, Hickman DT, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PloS one 2013; 8(8):e72301. https://doi.org/10.1371/journal.pone.0072301

    Article  PubMed  PubMed Central  Google Scholar 

  76. Grüninger F. Invited review: Drug development for tauopathies. Neuropathology and Applied Neurobiology 2015; 41(1):81–96. https://doi.org/10.1111/nan.12192

    Article  PubMed  CAS  Google Scholar 

  77. Novak P, Zilka N, Zilkova M. et al. AADvac1, an Active Immunotherapy for Alzheimer’s Disease and Non Alzheimer Tauopathies: An Overview of Preclinical and Clinical Development. J Prev Alzheimers Dis 2019;6:63–69. https://doi.org/10.14283/jpad.2018.45

    CAS  PubMed  Google Scholar 

  78. Robinson HL & Pertmer TM. DNA vaccines for viral infections: basic studies and applications. Advances in Virus Research 2000; 55:1–74. https://doi.org/10.1016/s0065-3527(00)55001-5

    Article  CAS  PubMed  Google Scholar 

  79. Martins YA, Tsuchida CJ, Antoniassi P & Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer’s Disease in Animal Models: A Systematic Review from Literature. Journal of Alzheimer’s Disease Reports 2017; 1(1):195–217. doi:https://doi.org/10.3233/adr-170025

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ghochikyan A, Davtyan H, Petrushina I, Hovakimyan A, Movsesyan N, Davtyan A, Kiyatkin A, Cribbs DH & Agadjanyan MG. Refinement of a DNA based Alzheimer’s disease epitope vaccine in rabbits. Human Vaccines & Immunotherapeutics 2013; 9(5):1002–1010. https://doi.org/10.4161/hv.23875

    Article  CAS  Google Scholar 

  81. Movsesyan N, Ghochikyan A, Mkrtichyan M, Petrushina I, Davtyan H, Olkhanud PB, et al. Reducing AD-Like Pathology in 3×Tg-AD Mouse Model by DNA Epitope Vaccine — A Novel Immunotherapeutic Strategy. PLoS ONE 2008; 3(5):e2124. doi:https://doi.org/10.1371/journal.pone.0002124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bach P, Tschäpe JA, Kopietz F, Braun G, Baade JK, Wiederhold KH, Staufenbiel M, Prinz M, Deller T, Kalinke U, Buchholz CJ & Müller UC. Vaccination with Abeta-displaying virus-like particles reduces soluble and insoluble cerebral Abeta and lowers plaque burden in APP transgenic mice. Journal of Immunology (Baltimore, Md.:1950) 2009; 182(12):7613–7624. https://doi.org/10.4049/jimmunol.0803366

    Article  CAS  Google Scholar 

  83. Petrushina, I, Ghochikyan A, Mktrichyan M, Mamikonyan G, Movsesyan N, Davtyan H, Patel A, Head E, Cribbs DH & Agadjanyan MG. Alzheimer’s disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Abeta species in amyloid precursor protein transgenic mice. The Journal of Neuroscience:The official Journal of the Society for Neuroscience 2007; 27(46):12721–12731. https://doi.org/10.1523/JNEUROSCI.3201-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zou J, Yao Z, Zhang G, Wang H, Xu J, Yew DT & Forster EL. Vaccination of Alzheimer’s model mice with adenovirus vector containing quadrivalent foldable Abeta(1-15) reduces Abeta burden and behavioral impairment without Abeta-specific T cell response. Journal of the Neurological Sciences 2008; 272(1–2):87–98. https://doi.org/10.1016/j.jns.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  85. Lambracht-Washington D, Qu BX, Fu M, Anderson LD, JrEagar TN, Stüve O & Rosenberg RN. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease. Journal of Neuroimmunology 2013; 254(1–2):63–68. https://doi.org/10.1016/j.jneuroim.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  86. Kim H-D, Jin J-J, Maxwell JA & Fukuchi K. Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer’s disease. Immunology Letters 2007; 112(1):30–38. doi:https://doi.org/10.1016/j.imlet.2007.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosenberg RN, Fu M & Lambracht-Washington D. Active full-length DNA Aβ42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimer’s Research & Therapy 2018; 10(1). doi:https://doi.org/10.1186/s13195-018-0441-4

  88. Davtyan H, Chen WW, Zagorski K, Davis J, Petrushina I, Kazarian K, Cribbs DH, Agadjanyan MG, Blurton-Jones M & Ghochikyan A. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 2017; 35(16):2015–2024. https://doi.org/10.1016/j.vaccine.2017.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsumoto Y, Niimi N & Kohyama K. Development of a New DNA Vaccine for Alzheimer Disease Targeting a Wide Range of Aβ Species and Amyloidogenic Peptides. PLoS ONE 2013; 8(9):e75203. doi:https://doi.org/10.1371/journal.pone.0075203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xing XN, Zhang WG, Sha S, Li Y, Guo R, Wang C & Cao YP. Amyloid β 3–10 DNA vaccination suggests a potential new treatment for Alzheimer’s disease in BALB/c mice. Chinese Medical Journal 2011; 124(17):2636–2641.

    CAS  PubMed  Google Scholar 

  91. Olkhanud PB, Mughal M, Ayukawa K, Malchinkhuu E, Bodogai M, Feldman N, Rothman S, Lee JH, Chigurupati S, Okun E, Nagashima K, Mattson MP & Biragyn A. DNA immunization with HBsAg-based particles expressing a B cell epitope of amyloid β-peptide attenuates disease progression and prolongs survival in a mouse model of Alzheimer’s disease. Vaccine 2012; 30(9):1650–1658. https://doi.org/10.1016/j.vaccine.2011.12.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qu B, Boyer PJ, Johnston SA, Hynan LS & Rosenberg RN. Abeta42 gene vaccination reduces brain amyloid plaque burden in transgenic mice. Journal of the Neurological Sciences 2006; 244(1–2):151–158. https://doi.org/10.1016/j.jns.2006.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prins ND & Scheltens P. Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. In Alzheimer’s Research & Therapy 2013; 5(6):56. https://doi.org/10.1186/alzrt220

    Article  CAS  Google Scholar 

  94. Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A & Logroscino G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. In Expert Review of Clinical Immunology 2014; 10(3):405–419. https://doi.org/10.1586/1744666x.2014.883921

    Article  CAS  Google Scholar 

  95. Moreth J, Mavoungou C & Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets? In Immunity & Ageing 2013; 10(1):18. https://doi.org/10.1186/1742-4933-10-18

    Article  Google Scholar 

  96. Morgan D. Immunotherapy for Alzheimer’s disease. In Journal of Internal Medicine 2011; 269(1):54–63). https://doi.org/10.1111/j.1365-2796.2010.02315.x

    Article  CAS  Google Scholar 

  97. Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine 2000; 6(8):916–919.

    Article  CAS  PubMed  Google Scholar 

  98. Montoliu-Gaya L & Villegas S. Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer’s disease treatment. Expert Reviews in Molecular Medicine 2016; 18. https://doi.org/10.1017/erm.2016.11

  99. Frost JL, Liu B, Kleinschmidt M, Schilling S, Demuth H-U & Lemere CA. Passive Immunization against Pyroglutamate-3 Amyloid-β Reduces Plaque Burden in Alzheimer-Like Transgenic Mice: A Pilot Study. Neurodegenerative Diseases 2012; 10(1–4):265–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Venkataramani V, Wirths O, Budka H, Härtig W, Kovacs GG & Bayer TA. Antibody 9D5 Recognizes Oligomeric Pyroglutamate Amyloid-β in a Fraction of Amyloid-β Deposits in Alzheimer’s Disease without Cross-Reactivity with other Protein Aggregates. Journal of Alzheimer’s Disease 2012; JAD29(2):361–371.

    Article  CAS  Google Scholar 

  101. Black RS, Sperling RA, Safirstein B, Motter RN, Pallay A, Nichols A & Grundman M. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Disease and Associated Disorders 2010; 24(2):198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurology 2012; 11(3):241–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bagyinszky E, Youn YC, An SSA & Kim S. The genetics of Alzheimer’s disease. Clinical Interventions in Aging 2014; 9:535–551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E & for the AAB-001 201/202 Investigators Effect of Immunotherapy With Bapineuzumab on Cerebrospinal Fluid Biomarker Levels in Patients With Mild to Moderate Alzheimer Disease. Archives of Neurology 2012; 69(8):1002–1010

    Article  PubMed  Google Scholar 

  105. Sperling RA, Jack CR, JrBlack SE, Frosch MP, Greenberg SM, Hyman BT, Scheltens P. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 2011; 7(4):367–385. https://doi.org/10.1016/j.jalz.2011.05.2351

    Article  Google Scholar 

  106. Aisen, P.S. Failure After Failure. What Next in AD Drug Development?. J Prev Alzheimers Dis 2019; 6:150. https://doi.org/10.14283/jpad.2019.2

    CAS  PubMed  Google Scholar 

  107. Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, Dowsett SA, Pontecorvo MJ, Dean RA & Demattos R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 2016; 12(2):110–120.

    Article  Google Scholar 

  108. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM & Paul SM. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nature Neuroscience 2002; 5(5):452–457.

    Article  CAS  PubMed  Google Scholar 

  109. Mably AJ, Liu W, McDonald JM, Dodart JC, Bard F, Lemere CA, O’Nuallain B & Walsh DM. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. In Neurobiology of Disease 2015; 82:372–384. https://doi.org/10.1016/j.nbd.2015.07.008

    Article  CAS  Google Scholar 

  110. Farlow M, Arnold SE, van Dyck CH, Aisen PS, Joy Snider B, Porsteinsson AP, Friedrich S, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. In Alzheimer’s & Dementia 2012; 8(4):261–271. https://doi.org/10.1016/j.jalz.2011.09.224

    Article  CAS  Google Scholar 

  111. Neurology TL & The Lancet Neurology. Solanezumab: too late in mild Alzheimer’s disease? In The Lancet Neurology 2017; 16(2):97. https://doi.org/10.1016/s1474-4422(16)30395-7

    Article  Google Scholar 

  112. Topline Result for First DIAN-TU Clinical Trial: Negative on Primary 10 Feb 2020

  113. https://www.alzforum.org/therapeutics/solanezumab updated May 2020

  114. Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, Fanning K, et al. The DIAN-TU Next Generation Alzheimer’s prevention trial: Adaptive design and disease progression model. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 2017; 13(1):8–19.

    Article  Google Scholar 

  115. Sperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP & Aisen P. The A4 Study: Stopping AD Before Symptoms Begin? Science Translational Medicine 2014; 6(228):228fs13–fs228fs13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K. Gantenerumab: A Novel Human Anti-Aβ Antibody Demonstrates Sustained Cerebral Amyloid-β Binding and Elicits Cell-Mediated Removal of Human Amyloid-β. Journal of Alzheimer’s Disease: JAD 2012; 28(1):49–69.

    Article  CAS  PubMed  Google Scholar 

  117. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, Ashford E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimer’s Research & Therapy 2017; 9(1):1–15.

    CAS  Google Scholar 

  118. High-Dose Gantenerumab Lowers Plaque Load 13 Dec 2017

  119. https://www.alzforum.org/therapeutics/gantenerumab updated 25 January 2021

  120. Ultsch M, Li B, Maurer T, Mathieu M, Adolfsson O, Muhs A, Pfeifer A, Pihlgren M. Structure of Crenezumab Complex with Aβ Shows Loss of β-Hairpin. Scientific Reports 2016; 6:39374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, et al. An Effector-Reduced Anti-β-Amyloid (Aβ) Antibody with Unique Aβ Binding Properties Promotes Neuroprotection and Glial Engulfment of Aβ. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2012; 32(28):9677–9689.

    Article  CAS  Google Scholar 

  122. Cummings JL, Cohen S, van Dyck CH, Brody M, Curtis C, Cho W, Ward M, et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 2018; 90(21):e1889–e1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tariot PN, Lopera F, Langbaum JB, Thomas RG, Hendrix S, Schneider LS, Rios-Romenets S, et al. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: A study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimer’s & dementia (New York, N. Y.) 2018; 4:150–160. https://doi.org/10.1016/j.trci.2018.02.002

    Article  Google Scholar 

  124. Porte SLL, La Porte SL, Bollini SS, Lanz TA, Abdiche YN, Rusnak AS, Ho W.H, et al. Structural Basis of C-terminal β-Amyloid Peptide Binding by the Antibody Ponezumab for the Treatment of Alzheimer’s Disease. In Journal of Molecular Biology 2012; 421(4–5):525–536). https://doi.org/10.1016/j.jmb.2011.11.047.

    Article  CAS  Google Scholar 

  125. Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing CB, JrBales K, Alvey C, McCush F, Yang J, Kupiec JW & Bednar MM. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clinical Neuropharmacology 2013; 36(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  126. Topline Results: 18 Months of BAN2401 Might Work 7 Jul 2018

  127. Logovinsky, V., Satlin, A., Lai, R., Swanson, C., Kaplow, J., Osswald, G., Basun, H., & Lannfelt, L. Safety and tolerability of BAN2401—a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimer’s Research & Therapy 2016;8(1), 14. https://doi.org/10.1186/s13195-016-0181-2

    Article  CAS  Google Scholar 

  128. Vellas B, Aisen P. New Hope for Alzheimer’s Disease. J Prev Alzheimers Dis 2021; 8, 238–239. https://doi.org/10.14283/jpad.2021.26

    CAS  PubMed  Google Scholar 

  129. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618):50–56). https://doi.org/10.1038/nature19323.

    Article  CAS  PubMed  Google Scholar 

  130. Aducanumab, Solanezumab, Gantenerumab Data Lift Crenezumab, As Well 10 Aug 2015

  131. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618):50–6. PubMed.

    Article  CAS  PubMed  Google Scholar 

  132. Keep Your Enthusiasm? Scientists Process Brutal Trial Data 16 May 2019

  133. ‘Reports of My Death Are Greatly Exaggerated.’ Signed, Aducanumab 24 Oct 2019

  134. Biogen Asks FDA To Approve Aducanumab 8 Jul 2020

  135. Advisory Committee Again Urges FDA to Vote No on Aducanumab 14 Apr 2021

  136. Aducanumab Approved to Treat Alzheimer’s Disease 7 Jun 2021

  137. Szabo P, Mujalli DM, Rotondi ML, Sharma R, Weber A, Schwarz H-P, Weksler ME & Relkin N. Measurement of anti-beta amyloid antibodies in human blood. Journal of Neuroimmunology 2010; 227(1–2):167–174

    Article  CAS  PubMed  Google Scholar 

  138. Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R & Weksler ME. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiology of Aging 2009; 30(11):1728–1736.

    Article  CAS  PubMed  Google Scholar 

  139. Imbimbo BP, Ippati S, Ceravolo F, Watling M. Perspective: Is therapeutic plasma exchange a viable option for treating Alzheimer’s disease?. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 2020; 6(1):e12004.

    Google Scholar 

  140. Loeffler DA. AMBAR, an Encouraging Alzheimer’s Trial That Raises Questions. Frontiers in Neurology, 2020; 11:459. https://doi.org/10.3389/fneur.2020.00459

    Article  PubMed  PubMed Central  Google Scholar 

  141. Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ. Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol. 2012 Aug;8(8):465–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the unknown referees for carefully reading the paper and giving valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Author’s contributions: NKJ and SO conceptualized the study and hypotheses. MBU, SB, SR, DK, AA and SKS performed literature search. NKJ draw the schemes and drafted the artwork. GG, DKC, KD, JR and KKK drafted the tables. NKJ, and other authors contributed significantly in editing the manuscript. PK, RKA, PP, SS, VU, FAK, RA, SKJ and MDS significantly contributed during revision. All authors read, edited and approved the manuscript.

Corresponding authors

Correspondence to Shreesh Ojha or Niraj Kumar Jha.

Ethics declarations

Conflict of Interest: The authors declare that they have no conflict of interest.

Consent for publication: All authors have read the final version of the manuscript and have given their consent for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M.B., Bhardwaj, S., Roychoudhury, S. et al. Immunotherapy for Alzheimer’s Disease: Current Scenario and Future Perspectives. J Prev Alzheimers Dis 8, 534–551 (2021). https://doi.org/10.14283/jpad.2021.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2021.52

Key words

Navigation