Anti-Tau Trials for Alzheimer’s Disease: A Report from the EU/US/CTAD Task Force

  • Jeffrey CummingsEmail author
  • K. Blennow
  • K. Johnson
  • M. Keeley
  • R. J. Bateman
  • J. L. Molinuevo
  • J. Touchon
  • P. Aisen
  • B. Vellas
  • EU/US/CTAD Task Force
CTAD Task Force Paper


Efforts to develop effective disease-modifying treatments for Alzheimer’s disease (AD) have mostly targeted the amyloid β (Aβ) protein; however, there has recently been increased interest in other targets including phosphorylated tau and other forms of tau. Aggregated tau appears to spread in a characteristic pattern throughout the brain and is thought to drive neurodegeneration. Both neuropathological and imaging studies indicate that tau first appears in the entorhinal cortex and then spreads to the neocortex. Anti-tau therapies currently in Phase 1 or 2 trials include passive and active immunotherapies designed to prevent aggregation, seeding, and spreading, as well as small molecules that modulate tau metabolism and function. EU/US/CTAD Task Force members support advancing the development of anti-tau therapies, which will require novel imaging agents and biomarkers, a deeper understanding of tau biology and the dynamic interaction of tau and Aβ protein, and development of multiple targets and candidate agents addressing the tauopathy of AD. Incorporating tau biomarkers in AD clinical trials will provide additional knowledge about the potential to treat AD by targeting tau.

Key words

Alzheimer’s disease tau tauopathy therapeutics biomarkers 


  1. 1.
    Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014;6:37.CrossRefGoogle Scholar
  2. 2.
    Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018;14:367–429.CrossRefGoogle Scholar
  3. 3.
    Alzheimer’s Disease International. World Alzheimer’s Report 2018. The state of the art of dementia research: New frontiers. London2018.Google Scholar
  4. 4.
    Sperling RA, Jack CR, Jr., Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med 2011;3:111cm133.CrossRefGoogle Scholar
  5. 5.
    Vellas B, Sampaio C, Bateman R, et al. EU./U.S. CTAD Task Force on Alzheimer’s Trial Populations. J Prev Alzheimers Dis 2014;1:110–116.Google Scholar
  6. 6.
    Ousset PJ, Cummings J, Delrieu J, et al. Is Alzheimer’s Disease Drug Development Broken? What Must Be Improved. J Prev Alzheimers Dis 2014;1:40–45.Google Scholar
  7. 7.
    Aisen PS. Continuing Progress in Alzheimer’s Disease Trials: Cause for Optimism. J Prev Alzheimers Dis 2017;4:211–212.Google Scholar
  8. 8.
    Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 2018;4:195–214.Google Scholar
  9. 9.
    Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.CrossRefGoogle Scholar
  10. 10.
    Cardenas-Aguayo Mdel C, Gomez-Virgilio L, DeRosa S, Meraz-Rios MA. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem Neurosci 2014;5:1178–1191.CrossRefGoogle Scholar
  11. 11.
    Holtzman DM, Carrillo MC, Hendrix JA, et al. Tau: From research to clinical development. Alzheimers Dement 2016;12:1033–1039.CrossRefGoogle Scholar
  12. 12.
    Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017;133:665–704.CrossRefGoogle Scholar
  13. 13.
    Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron 2011;70:410–426.CrossRefGoogle Scholar
  14. 14.
    Mudher A, Colin M, Dujardin S, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 2017;5:99.CrossRefGoogle Scholar
  15. 15.
    Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017;12:50.CrossRefGoogle Scholar
  16. 16.
    Braak H, Del Tredici K. Spreading of Tau Pathology in Sporadic Alzheimer’s Disease Along Cortico-cortical Top-Down Connections. Cereb Cortex 2018;28:3372–3384.CrossRefGoogle Scholar
  17. 17.
    Schwarz AJ, Yu P, Miller BB, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 2016;139:1539–1550.CrossRefGoogle Scholar
  18. 18.
    van Rossum IA, Vos SJ, Burns L, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 2012;79:1809–1816.CrossRefGoogle Scholar
  19. 19.
    Roe CM, Fagan AM, Grant EA, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology 2013;80:1784–1791.CrossRefGoogle Scholar
  20. 20.
    Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 2016;139:1551–1567.CrossRefGoogle Scholar
  21. 21.
    Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep 2016;16:1690–1700.CrossRefGoogle Scholar
  22. 22.
    West T, Hu Y, Verghese PB, et al. Preclinical and Clinical Development of ABBV-8E12, a Humanized Anti-Tau Antibody, for Treatment of Alzheimer’s Disease and Other Tauopathies. J Prev Alzheimers Dis 2017;4:236–241.Google Scholar
  23. 23.
    Melis V, Magbagbeolu M, Rickard JE, et al. Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol 2015;26:353–368.CrossRefGoogle Scholar
  24. 24.
    Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tauaggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 2016;388:2873–2884.CrossRefGoogle Scholar
  25. 25.
    Gueroux M, Fleau C, Slozeck M, Laguerre M, Pianet I. Epigallocatechin 3-Gallate as an Inhibitor of Tau Phosphorylation and Aggregation: A Molecular and Structural Insight. J Prev Alzheimers Dis 2017;4:218–225.Google Scholar
  26. 26.
    Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012;8:1–13.CrossRefGoogle Scholar
  27. 27.
    Jack CR, Jr., Wiste HJ, Weigand SD, et al. Age-specific and sex-specific prevalence of cerebral beta-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol 2017;16:435–444.CrossRefGoogle Scholar
  28. 28.
    Sepulcre J, Grothe MJ, Sabuncu M, et al. Hierarchical Organization of Tau and Amyloid Deposits in the Cerebral Cortex. JAMA Neurol 2017;74:813–820.CrossRefGoogle Scholar
  29. 29.
    Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016;15:673–684.CrossRefGoogle Scholar
  30. 30.
    Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology 2016;87:1827–1835.CrossRefGoogle Scholar
  31. 31.
    Zetterberg H, Wilson D, Andreasson U, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther 2013;5:9.CrossRefGoogle Scholar
  32. 32.
    Mielke MM, Hagen CE, Xu J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 2018;14:989–997.CrossRefGoogle Scholar
  33. 33.
    Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature 2018;554:249–254.CrossRefGoogle Scholar
  34. 34.
    Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid beta concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 2017;13:841–849.CrossRefGoogle Scholar
  35. 35.
    Janelidze S, Stomrud E, Palmqvist S, et al. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep 2016;6:26801.CrossRefGoogle Scholar
  36. 36.
    Gisslen M, Price RW, Andreasson U, et al. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine 2016;3:135–140.CrossRefGoogle Scholar
  37. 37.
    Lewczuk P, Ermann N, Andreasson U, et al. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res Ther 2018;10:71.CrossRefGoogle Scholar
  38. 38.
    Zetterberg H, Skillback T, Mattsson N, et al. Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression. JAMA Neurol 2016;73:60–67.CrossRefGoogle Scholar
  39. 39.
    Bacioglu M, Maia LF, Preische O, et al. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases. Neuron 2016;91:56–66.CrossRefGoogle Scholar
  40. 40.
    Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017;88:930–937.CrossRefGoogle Scholar
  41. 41.
    Portelius E, Olsson B, Hoglund K, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol 2018;136:363–376.CrossRefGoogle Scholar
  42. 42.
    Sandelius A, Portelius E, Kallen A, et al. Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimers Dement 2019;15:55–64.CrossRefGoogle Scholar
  43. 43.
    Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol 2018;136:821–853.CrossRefGoogle Scholar
  44. 44.
    Meredith JE, Jr., Sankaranarayanan S, Guss V, et al. Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease. PLoS One 2013;8:e76523.CrossRefGoogle Scholar
  45. 45.
    Sato C, Barthelemy NR, Mawuenyega KG, et al. Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 2018;97:1284–1298 e1287.CrossRefGoogle Scholar
  46. 46.
    Zhang Z, Song M, Liu X, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med 2014;20:1254–1262.CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Kang SS, Liu X, et al. Asparagine endopeptidase cleaves alpha-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol 2017;24:632–642.CrossRefGoogle Scholar
  48. 48.
    Leuzy A, Cicognola C, Chiotis K, et al. Longitudinal tau and metabolic PET imaging in relation to novel CSF tau measures in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2019.Google Scholar
  49. 49.
    Cicognola C, Brinkmalm G, Wahlgren J, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol 2019;137:279–296.CrossRefGoogle Scholar
  50. 50.
    Jack CR, Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018;14:535–562.CrossRefGoogle Scholar
  51. 51.
    Blennow K, Zetterberg H. Amyloid and Tau Biomarkers in CSF. J Prev Alzheimers Dis 2015;2:46–50.Google Scholar
  52. 52.
    Blennow K, Zetterberg H, Rinne JO, et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 2012;69:1002–1010.CrossRefGoogle Scholar
  53. 53.
    Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017;9:95.CrossRefGoogle Scholar
  54. 54.
    Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014;370:322–333.CrossRefGoogle Scholar
  55. 55.
    Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-beta PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement 2018;14:1470–1481.CrossRefGoogle Scholar
  56. 56.
    Khanna MR, Kovalevich J, Lee VM, Trojanowski JQ, Brunden KR. Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimers Dement 2016;12:1051–1065.CrossRefGoogle Scholar
  57. 57.
    Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018;17:1016–1024.CrossRefGoogle Scholar

Copyright information

© Serdi and Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffrey Cummings
    • 1
    Email author
  • K. Blennow
    • 2
  • K. Johnson
    • 3
  • M. Keeley
    • 4
  • R. J. Bateman
    • 5
  • J. L. Molinuevo
    • 6
  • J. Touchon
    • 7
  • P. Aisen
    • 8
  • B. Vellas
    • 9
  • EU/US/CTAD Task Force
  1. 1.University of Nevada Las Vegas, School of Allied Health Sciences and Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasUSA
  2. 2.Inst. of Neuroscience and PhysiologyUniversity of Gothenburg, Sahlgrenska University HospitalMölndalSweden
  3. 3.Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Genentech Research and Early Development, So.San FranciscoUSA
  5. 5.Washington University School of MedicineSt. LouisUSA
  6. 6.BarcelonaBeta Brain Research Center Pasqual Maragall FoundationBarcelonaSpain
  7. 7.INSERM U1061Montpellier UniversityMontpellierFrance
  8. 8.Alzheimer’s Therapeutic Research Institute (ATRI), Keck School of MedicineUniversity of Southern CaliforniaSan DiegoUSA
  9. 9.Gerontopole, INSERM U1027, Alzheimer’s Disease Research and Clinical CenterToulouse University HospitalToulouseFrance

Personalised recommendations