Skip to main content
Log in

Regression estimators for the tail index

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

We propose a class of weighted least squares estimators for the tail index of a distribution function with a regularly varying tail. Our approach is based on the method developed by Holan and McElroy (2010) for the Parzen tail index. We prove asymptotic normality and consistency for the estimators under suitable assumptions. These and earlier estimators are compared in various models through a simulation study using the mean squared error as criterion. The results show that the weighted least squares estimator has good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Al-Najafi and L. Viharos, Weighted least squares estimators for the Parzen tail index, Period. Math. Hungar. (2021).

    Google Scholar 

  2. M. Csörgő and P. Révész, Strong approximations of the quantile process, Ann. Statist., 6 (1978), 882–894.

    Article  MathSciNet  Google Scholar 

  3. A. L. Dekkers, J. H. J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value estimator, Ann. Statist., 17 (1989), 1833–1855.

    MathSciNet  MATH  Google Scholar 

  4. P. Hall, On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Sebr. B, 44 (1982), 37–42.

    MathSciNet  MATH  Google Scholar 

  5. B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist., 3 (1975), 1163–1174.

    Article  MathSciNet  Google Scholar 

  6. S. H. Holan and T. S. Mcelroy, Tail exponent estimation via broadband log density-quantile regression, J. Statist. Plann. Inference, 140 (2010), 3693–3708.

    Article  MathSciNet  Google Scholar 

  7. E. Parzen, Quantile probability and statistical data modeling, Statist. Sci., 19 (2004), 652–662.

    Article  MathSciNet  Google Scholar 

  8. J. Pickands III, Statistical inference using extreme order statistics, Ann. Statist., 3 (1975), 119–131.

    MathSciNet  MATH  Google Scholar 

  9. George A. F. Seber, A matrix handbook for statisticians, Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2008.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amenah AL-Najafi.

Additional information

Communicated by L. Molnár

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Najafi, A., Stachó, L.L. & Viharos, L. Regression estimators for the tail index. ActaSci.Math. 87, 649–678 (2021). https://doi.org/10.14232/actasm-020-361-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-020-361-6

AMS Subject Classification

Key words and phrases

Navigation