Abstract
For non-reflexive Banach spaces X, Y, for a very smooth point in the space of compact linear operators K(X, Y), we give several sufficient conditions for the adjoint to be a very smooth point in K(Y *,X*). We exhibit a new class of extreme points in the dual unit ball of injective product spaces. These ideas are also related to Birkhoff-James orthogonality in spaces of operators.
This is a preview of subscription content, access via your institution.
References
E. Behrends, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer, Berlin, 1979.
M. Cambern and P. Greim, The bidual of C(X,E), Proc. Amer. Math. Soc., 85 (1982), 53–58.
M. Cambern and P. Greim, Uniqueness of preduals for spaces of continuous vector functions, Canad. Math. Bull., 32 (1989), 98–104.
J. Diestel and J. J. Uhl, Vector measures, Mathematical Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
G. Godefroy and V. Indumathi, Norm-to-weak upper semi-continuity of the duality and pre-duality mappings, Set-Valued Anal., 10 (2002), 317–330.
P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics 1547, Springer-Verlag, Berlin, 1993.
S. Heinrich, The differentiability of the norm in spaces of operators, Funkcional. Anal. i Prilozen., 9 (1975), 93–94 (in Russian); English translation: Funct. Anal. Appl. (4), 9 (1975), 360–362.
R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Pitman, 1993.
R. B. Holmes Geometric functional analysis and its applications, Graduate Texts in Math. 24, Springer-Verlag, New York - Heidelberg, 1975.
Z. Hu and B. L. Lin, RNP and CPCP in Lebesgue-Bochner function spaces, Illinois J. Math., 37 (1993), 328–347.
B. L. Lin P. K. Lin and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc., 102 (1988), 526–528.
T. S. S. R. K. Rao L(X, C(K)) as a dual space, Proc. Amer. Math. Soc., 110 (1990), 727–729.
T. S. S. R. K. Rao On ideals in Banach spaces, Rocky Mountain J. Math., 31 (2001), 595–609.
T. S. S. R. K. Rao Smooth points in spaces of operators, Linear Algebra Appl., 517 (2017), 129–133.
W. Ruess and C. Stegall, Extreme points in duals of operator spaces, Math. Ann., 261 (1982), 535–546.
F. Sullivan, Geometric properties determined by the higher duals of a Banach space, Illinois J. Math., 21 (1977), 315–331.
P. Wöjcik, Orthogonality of compact operators, Expo. Math., 35 (2017), 86–94.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Molnár
Rights and permissions
About this article
Cite this article
Rao, T.S.S.R.K. Geometry of spaces of compact operators. ActaSci.Math. 85, 495–505 (2019). https://doi.org/10.14232/actasm-018-809-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.14232/actasm-018-809-2
AMS Subject Classification (2000)
- 47L05
- 46B28
- 46B25
Key words and phrases
- smooth points
- very smooth points
- adjoints of operators
- spaces of operators
- essential norm
- injective and projective tensor product spaces