Skip to main content
Log in

Equivalences of matrix polynomials

  • Published:
Acta Scientiarum Mathematicarum Aims and scope Submit manuscript

Abstract

We investigate whether variants of equivalence of (singular) matrix polynomials imply those of the first companion linearizations, and the converse question. We study a method of deciding whether two polynomials are strictly equivalent, and which are all the pairs of matrices effecting this equivalence. The corresponding problems for the (strict) similarity of square matrix polynomials are studied. We investigate the strict equivalence of a square polynomial to a polynomial whose all coefficient matrices are diagonal, and study also the singular case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Belitskii and V.V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl., 361 (2003), 203–222.

    Article  MathSciNet  Google Scholar 

  2. O. E. Brown, The equivalence of triples of bilinear forms, Bull. Amer. Math. Soc., 37 (1931), 424–426.

    Article  MathSciNet  Google Scholar 

  3. R. Byers, V. Mehrmann and H. Xu, Trimmed linearizations for structured matrix polynomials, Linear Algebra Appl., 429 (2008), 2373–2400.

    Article  MathSciNet  Google Scholar 

  4. F. de Teran and F.M. Dopico, Sharp lower bounds for the dimension of linearizations of matrix polynomials, Electr. J. Linear Algebra, 17 (2008), 518–531.

    MathSciNet  MATH  Google Scholar 

  5. J. A. Dias da Silva and T. J. Laffey, On simultaneous similarity of matrices and related questions, Linear Algebra Appl., 291 (1999), 167–184.

    Article  MathSciNet  Google Scholar 

  6. S. Friedland, Simultaneous similarity of matrices, Advances in Math., 50 (1983), 189–265.

    Article  MathSciNet  Google Scholar 

  7. F. R. Gantmakher, The Theory of Matrices, Chelsea, New York, 1977 (2 volumes).

    Google Scholar 

  8. I. M. Gelfand and V. A. Ponomarev, Remarks on the classification of pairs of commuting linear transformations in a finite dimensional space, Functional Anal. Applications, 3 (1969), 81–82 (in Russian).

    Article  MathSciNet  Google Scholar 

  9. I. Gohberg, M. A. Kaashoek and P. Lancaster, General theory of regular matrix polynomials and band Toeplitz operators, Integral Equations Operator Theory, 11 (1988), 776–882.

    Article  MathSciNet  Google Scholar 

  10. I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.

    MATH  Google Scholar 

  11. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1986.

    Google Scholar 

  12. V. B. Khazanov, Spectral properties of lambda-matrices, LOMI Steklov, 111 (1981), 180–194 (in Russian).

    MathSciNet  MATH  Google Scholar 

  13. P. Lancaster and U. Prells, Isospectral families of high-order systems, Z. Angew. Math. Mech., 87 (2007), 219–234.

    Article  MathSciNet  Google Scholar 

  14. P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mech. Systems and Signal Processing, 23 (2009), 1134–1144.

    Article  Google Scholar 

  15. S. K. Mitra, Simultaneous diagonalization of rectangular matrices, Linear Alg. Appl., 47 (1982), 139–150.

    Article  MathSciNet  Google Scholar 

  16. M. Nathanson, Classification problems in K-categories, Fundamenta Math., 105 (1980), 187–197.

    Article  MathSciNet  Google Scholar 

  17. V. V. Sergeichuk, Classification problems for systems of forms and linear mappings, Math. USSR-Izv., 31 (1988), 481–501.

    Article  MathSciNet  Google Scholar 

  18. V. V. Sergeichuk and D. V. Galinskii, Classification of pairs of linear operators in a four dimensional vector space, Infinite Groups and Related Algebraic Structures, Inst. Mat. Ukrain. Akad. Nauk, Kiev, 1993, 413–430 (in Russian).

    Google Scholar 

  19. B. Z. Shavarovskii, On some “tame” and “wild” aspects of the problem of semiscalar equivalence of polynomial matrices, Matem. Zametki, 76 (2004), 119–132.

    Article  MathSciNet  Google Scholar 

  20. B. Z. Shavarovskii, Similarity transformations of decomposable matrix polynomials and related questions, Computational Mathematics and Mathematical Physics, 49 (2009), 1469–1482.

    Article  MathSciNet  Google Scholar 

  21. J. C. Zuniga Anaya, Diagonalization of quadratic matrix polynomials, Systems Control Letters, 59 (2010), 105–113.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl-Heinz Förster or Béla Nagy.

Additional information

Communicated by L. Kérchy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, KH., Nagy, B. Equivalences of matrix polynomials. ActaSci.Math. 80, 233–260 (2014). https://doi.org/10.14232/actasm-012-012-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14232/actasm-012-012-z

Key words and phrases

AMS Subject Classifications

Navigation