Skip to main content
Log in

High-performing vapor-cell frequency standards

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Many nowadays scientific and technological applications need very precise time and frequency reference signals. Very often, only atomic clocks can guarantee the high level of accuracy and stability required by these signals. In the current scenario of atomic frequency standards, vapor-cell clocks are particularly suited to be employed in those activities that demand good frequency stability performances joined to compactness, reliability and low power consumption. Recently, due to better-performing laser sources and to innovative techniques to prepare and detect the atoms, several cell-based prototypes exhibiting unprecedented frequency stability have been developed. We review advances in the field of laser-pumped vapor-cell clocks and we provide an overview of the techniques that allowed to achieve frequency stabilities in the order of 1 × 10−13 at 1 s (short term) and in the range of 10−15 for the medium-long term. These stabilities are two orders of magnitude better than current commercial Rb clocks. We also prospect the possibility of further improving these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camparo J., Phys. Today, 60 (2007) 33.

    Article  Google Scholar 

  2. Kastler A., J. Phys. Radium, 11 (1950) 255.

    Article  Google Scholar 

  3. Bender P. L., Beaty E. C. and Chi A. R., Phys. Rev. Lett., 1 (1958) 311.

    Article  ADS  Google Scholar 

  4. Vanier J. and Audoin C., The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol) 1989.

    Book  Google Scholar 

  5. Dupuis R. T., Lynch T. J. and Vaccaro J. R., Proceedings of the 2008 IEEE International Frequency Control Symposium, edited by Jadusliwer B. (Honolulu, Hawaii, USA) 2008, pp. 655–660.

  6. Waller P., Gonzalez S., Binda S., Sesia I., Hidalgo I., Tobias G. and Tavella P., IEEE Trans. Ultrason. Ferroelct. Freq. Control, 57 (2010) 738.

    Article  Google Scholar 

  7. Glonass Navigation Satellite System, interface control document, Edition 5.1, Moscow, 2008.

  8. Han Chunhao, Cai Zhiwu, Lin Yuting, Liu Li, Xiao Shenghong, Zhu Lingfeng and Wang Xianglei, Int. J. Navig. Observ., 2013 (2013) 371450, http://dx.doi.org/10.1155/2013/371450.

    Google Scholar 

  9. Petremand Y., Affolderbach C., Straessle R., Pellaton M., Briand D., Mileti G. and de Rooij N. F., J. Micromech. Microeng., 22 (2012) 025013.

    Article  ADS  Google Scholar 

  10. Knappe S., Compr. Microsyst, 3 (2008) 571.

    Article  Google Scholar 

  11. Kitching J., Knappe S. and Hollberg L., Appl. Phys. Lett, 81 (2002) 553.

    Article  ADS  Google Scholar 

  12. Lutwak R., Rashed A., Varghese M., Tepolt G., LeBlanc J., Mescher M., Serkland D. K., Geib K. M., Peake G. M. and Romisch S., Proceedings 10th Precise Time and Time Interval Meeting (Long Beach, CA, USA) 2007, pp. 269–290.

  13. Hasegawa M., Chutani R.K., Gorecki C., Boudot R., Dziuban P., Giordano V., Clatot S. and Mauri L., Sensors Actuators A, 167 (2011) 594.

    Article  Google Scholar 

  14. Gong F., Jau Y.-Y., Jensen K. and Happer W., Rev. Sci. Instrum., 77 (2006) 076101.

    Article  ADS  Google Scholar 

  15. Liew L.-A., Knappe S., Moreland J., Robinson H., Hollberg L. and Kitching J., Appl. Phys. Lett., 84 (2004) 2694.

    Article  ADS  Google Scholar 

  16. Camparo J. C. and Frueholtz R. P., J. Appl. Phys., 59 (1986) 301; 3315.

    Article  ADS  Google Scholar 

  17. Bandi T., Affolderbach C., Calosso C. E. and Mileti G., Electron. Lett., 47 (2011) 698.

    Article  Google Scholar 

  18. Micalizio S., Calosso C. E., Godone A. and Levi F., Metrologia, 49 (2012) 425.

    Article  ADS  Google Scholar 

  19. Battisti A., Cosentino A, Sapia A., Gioia M., Borella A., Godone A., Levi F., Calosso C. and Micalizio S., Proceedings of the European Frequency and Time Forum (Neuchatel, Switzerland) 2014, pp. 423–426.

  20. Belloni M., Battisti A., Cosentino A., Sapia A., Borella A., Micalizio S., Godone A., Levi F., Calosso C., Zuliani L., Longo F. and Donati M., Proceedings of the 41st Annual Precise Time and Time Interval Systems and Applications Meeting (Santa Ana Pueblo, New Mexico) 2009, pp. 519–530.

  21. De Sarlo L., Langlois M., Holleville D., Lours M., Dimarcq N., Schaff J.-F., Bernon S. and Desruelle B., Proceedings of the European Frequency and Time Forum (Neuchatel, Switzerland) 2014, p. 219.

  22. Dicke R. H., Phys. Rev., 89 (1953) 472.

    Article  ADS  Google Scholar 

  23. Godone A., Levi F., Micalizio S. and Vanier J., Phys. Rev. A, 62 (2000) 053402.

    Article  ADS  Google Scholar 

  24. Godone A., Levi F. and Micalizio S., Coherent Population Trapping Maser (CLUT Editrice, Torino) 2002.

    Book  Google Scholar 

  25. Vanier J. and Mandache C., Appl. Phys. B, 87 (2007) 565.

    Article  ADS  Google Scholar 

  26. Micalizio S., Godone A., Levi F. and Calosso C., Phys. Rev. A, 79 (2009) 013403.

    Article  ADS  Google Scholar 

  27. Vanier J., Simard J. F. and Boulanger J. S., Phys. Rev. A, 9 (1974) 1031.

    Article  ADS  Google Scholar 

  28. Vanier J., Kunski R., Brisson A. and Paulin P., J. Phys. Paris (call.), 42(C8) (1981) 139.

    Google Scholar 

  29. Bandi T., Affolderbach C. and Mileti G., J. App. Phys., 111 (2012) 124906.

    Article  ADS  Google Scholar 

  30. Demtroeder, Laser Spectroscopy, Basic Concepts and Instrumentation 3rd edition (Springer, Berlin, Germany) 2002.

    Google Scholar 

  31. Saburi Y., Koga Y., Kinugawa S., Imamura T., Suga H. and Ohuchi Y., IEEE Electron. Lett., 30 (1994) 633.

    Article  ADS  Google Scholar 

  32. Camparo J. Coffer J. and Townsend J., J. Opt. Soc. Am. B, 22 (2005) 529.

    Article  ADS  Google Scholar 

  33. Mileti G., Deng J., Walls F. L., Jennings D. A. and Drullinger R. E., IEEE J. Quantum Electron., 34 (1998) 233.

    Article  ADS  Google Scholar 

  34. Kramer G., Proceedings of the Conference on Precision Electromagnetic Measurements (London, UK) 1974, p. 157.

  35. Bandi T., Pellaton M., Miletic D., Affolderbach C., Gruet F., Matthey R., Mileti G., Stefanucci C., Violetti M., Merli F., Zurcher J. and Skrivervik A. K., Proceedings of the IEEE International Frequency Control Symposium (FCS) (Baltimore, MD, USA) 2012, pp. 1–6.

  36. Bandi T., PhD thesis, Universite de Neuchatel (2013).

  37. Bandi T., Affolderbach C., Mileti G., Stefanucci C., Merli F., Skrivervik A. K. and Calosso C. E., Proceedings of the European Frequency and Time Forum (EFTF) (Goteborg, Sweeden) 2012, pp. 494–496.

  38. Stefanucci C., Bandi T., Merli F., Pellaton M., Affolderbach C., Mileti G. and Skrivervik A. K., Rev. Scien. Instrum., 83 (2012) 104706.

    Article  ADS  Google Scholar 

  39. Calosso C. E., Micalizio S., Godone A., Bertacco E. K. and Levi F., IEEE Trans. Ultrason. Ferroelect. Freq. Control, 54 (2007) 1731.

    Article  Google Scholar 

  40. Davidovits P. and Novick R., Proc. IEEE, 54 (1966) 155.

    Article  Google Scholar 

  41. Vanier J., Phys. Rev., 168 (1968) 129.

    Article  ADS  Google Scholar 

  42. Michaud A., Tremblay P. and Tetu M., IEEE Trans. Instrum. Meas., 40 (1991) 170.

    Article  Google Scholar 

  43. Deng J., Liu J., An S., Tan Y. and Zhu X., IEEE Trans. Instrum. Meas., 43 (1994) 549.

    Article  Google Scholar 

  44. Oura N., Kuramochi N., Domon W., Komiyama T. and Shirato R., Proceedings of the European Frequency and Time Forum (EFTF) (Noordwijk, The Netherland) 1992, pp. 527–530.

  45. Tetu M., Brousseau R. and Vanier J., IEEE Trans. Instrum. Meas., 29 (1980) 94.

    Article  ADS  Google Scholar 

  46. Tetu M., Tremblay P., Lesage P. and Petit P., IEEE Trans. Instrum. Meas., 32 (1983) 410.

    Article  ADS  Google Scholar 

  47. Tetu M., Brousseau R, Cyr N., Michaud A., Tremblay P. and Villeneuve B., Proceedings of the Frequency Control Symposium (FCS) (Philadelphia, Pennsylvania, US) 1985, pp. 64–71.

  48. Tetu M., Busca G. and Vanier J., IEEE Trans. Instrum. Meas., 22 (1973) 250.

    Article  Google Scholar 

  49. Busca G., Brousseau R. and Vanier J., IEEE Trans. Instrum. Meas., 24 (1975) 291.

    Article  Google Scholar 

  50. Cohen-Tannoudji and Barrat J. P., J. Phys. (Paris), 22 (1961) 329; 443.

    Google Scholar 

  51. Mathur B. S., Tang H. and Happer W., Phys. Rev., 171 (1968) 11.

    Article  ADS  Google Scholar 

  52. Camparo J., Coffer J. and Townsend J., Proceedings of the IEEE International Frequency Control Symposium (Montreal, Canada) 2004, pp. 134–136.

  53. Affolderbach C., Droz F. and Mileti G., IEEE Trans. Instrum. Meas., 55 (2006) 429.

    Article  Google Scholar 

  54. Bandi T., Affolderbach C., Mileti G., Stefanucci C., Merli F. and Skrivervik A. K., Proceedings of European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC) Joint (Prague, Czech Republic) 2013, pp. 220–223.

  55. Micalizio S., Godone A., Calosso C., Levi F., Affolderbach C. and Gruet F., IEEE Trans. Ultrason. Ferroelect. Freq. Control, 59 (2012) 457.

    Article  Google Scholar 

  56. Camparo J. C., Buell W. F., Proceedings of the 1997 IEEE International Frequency Control Symposium (Orlando, FL, USA) 1997, pp. 253–258.

  57. Camparo J. C., IEEE International Frequency Control Symposium (New Orleans, LA, USA) 2002, pp. 476–479.

  58. Camparo J. C., Coffer J. G. and Townsend J. J., Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 2004, pp. 134–136.

  59. Arimondo E., Prog. Opt., XXXV (1996) 257.

    Article  Google Scholar 

  60. Vanier J., Appl. Phys. B, 81 (2005) 421.

    Article  ADS  Google Scholar 

  61. Shah V. and Kitching J., Adv. At. Mol. Opt. Phys., 59 (2010) 21.

    Article  ADS  Google Scholar 

  62. Alzetta G., Gozzini A., Moi L. and Orriols G., Nuovo Cimento B, 36 (1976) 5.

    Article  ADS  Google Scholar 

  63. Thomas J. E., Hemmer P. R., Ezekiel S., Leiby, jr. C. C., Picard R. H. and Willis C. R., Phys. Rev. Lett., 48 (1982) 867.

    Article  ADS  Google Scholar 

  64. Ezekiel S. et al., Phys. Rev. Lett., 50 (1983) 549.

    Article  ADS  Google Scholar 

  65. Hemmer P. R., J. Opt. Soc. Am. B, 10 (1993) 1326.

    Article  ADS  Google Scholar 

  66. Cyr N., Tetu M. and Breton M., IEEE Trans. Instrum. Meas., 42 (1993) 640.

    Article  Google Scholar 

  67. Vanier J., Godone A. and Levi F., Phys. Rev A, 58 (1998) 2345.

    Article  ADS  Google Scholar 

  68. Levi F., Godone A., Vanier J., Micalizio S. and Modugno G., Eur. Phys. J. D, 12 (2000) 53.

    Article  ADS  Google Scholar 

  69. Godone A., Levi F. and Micalizio S., Phys. Rev. A, 65 (2002) 033802.

    Article  ADS  Google Scholar 

  70. Levi F., Godone A. and Vanier J., IEEE Trans. UFFC, 47 (2000) 466.

    Article  Google Scholar 

  71. Zhu M. and Cutler L., Proceedings 32 PTTI (2000) p. 311.

  72. Godone A., Levi F., Micalizio S. and Calosso C., Phys. Rev. A, 70 (2004) 012508.

    Article  ADS  Google Scholar 

  73. Godone A., Levi F., Micalizio S. and Vanier J., Eur. Phys. J. D, 18 (2002) 5.

    ADS  Google Scholar 

  74. Nagel A. Affolderbach C., Knappe S. and Wynands R., Phys. Rev. A, 61 (2000) 012504.

    Article  ADS  Google Scholar 

  75. Stahler M., Wynands R., Knappe S., Kitching J., Hollberg L., Taichenachev A. et al., Opt. Lett., 27 (2002) 1472.

    Article  ADS  Google Scholar 

  76. Jau Y.-Y., Miron E., Post A. B., Kuzma N. N. and Happer W., Phys. Rev. Lett.93 (2004) 160802.

    Article  ADS  Google Scholar 

  77. Taichenachev V. et al., JETP Lett., 80 (2004) 236.

    Article  ADS  Google Scholar 

  78. Kazakov G., Mazets I., Rozhdestvensky Y., Mileti G., Delporte J. and Matisov B., Eur. Phys. J. D, 35 (2005) 445.

    Article  ADS  Google Scholar 

  79. Taichenachev A. V., Yudin V. I., Velichansky V. L. and Zibrov S. A., JETP Lett., 82 (2005) 398.

    Article  ADS  Google Scholar 

  80. Taichenachev V. A., Tumaikin A. M., Yudin V. I., Stahler M., Wynands R., Kitching J. and Hollberg L., Phys. Rev. A, 69 (2004) 024501

    Article  ADS  Google Scholar 

  81. Merimaa M., Lindvall T., Tittonen I. and Ikonen E., J. Opt. Soc. Am. B, 20 (2003) 273.

    Article  ADS  Google Scholar 

  82. Vanier J. et al., IEEE Trans. Instrum. Meas., 54 (2005) 2531.

    Article  Google Scholar 

  83. Knappe S., Wynands R., Kitching J., Robinson H. and Hollberg L., J. Opt. Soc. Am. B, 18 (2001) 1545.

    Article  ADS  Google Scholar 

  84. Kitching J., Knappe S., Vukicevic M., Hollberg L., Wynands R. and Weidmann W., IEEE Trans. Instrum. Meas., 49 (2000) 1313.

    Article  Google Scholar 

  85. Zhu M., Proceedings of the Joint Meeting 17th European Frequency and Time Forum and 2003 IEEE International Frequency Control Symposium (Tampa, FL, USA) 2003, pp. 16–21.

  86. Zanon T., Guerandel S., de Clercq E., Holleville D., Dimarcq N. and Clairon A., Phys. Rev. Lett., 94 (2005) 193002.

    Article  ADS  Google Scholar 

  87. Liu X., Merolla J.-M., Guerandel S., Gorecki C., de Clercq E. and Boudot R., Phys. Rev. A, 87 (2013) 013416.

    Article  ADS  Google Scholar 

  88. Godone A. and Micalizio S., unpublished.

  89. Liu X., Merolla J.-M., Guerandel S., Gorecki C., de Clercq E. and Boudot R., Opt. Express, 21 (2013) 12451.

    Article  ADS  Google Scholar 

  90. Kozlova O., Danet J.-M., Guerandel S. and de Clercq E., IEEE Trans. Instrum. Meas., 63 (2014) 1863.

    Article  Google Scholar 

  91. Guerandel S., Zanon T., Castagna N., Dashes F., de Clercq E., Dimarcq N. and Clairon A., IEEE Trans. Instrum. Meas., 56 (2007) 383.

    Article  Google Scholar 

  92. Castagna N., Boudot R., Guerandel S., de Clercq E., Dimarcq N. and Clairon A., IEEE Trans. Ultrason. Ferroelect. Freq. Control, 56 (2009) 246.

    Article  Google Scholar 

  93. Boudot R., Guerandel S., De Clercq E., Dimarcq N. and Clairon A., IEEE Trans. Instrum. Meas., 58 (2009) 1217.

    Article  Google Scholar 

  94. Godone A., Micalizio S. and Levi F., Phys. Rev. A, 70 (2004) 023409.

    Article  ADS  Google Scholar 

  95. Alley C. O., Quantum Electronics, edited by Townes C. H. (Columbia University Press, New York, USA) 1960.

  96. Arditi M. and Carver T. R., IEEE Trans. Instrum. Meas., 13 (1964) 146.

    Article  Google Scholar 

  97. Godone A., Micalizio S., Levi F. and Calosso C., Phys. Rev. A, 74 (2006) 043401.

    Article  ADS  Google Scholar 

  98. Micalizio S., Calosso C. E., Levi F. and Godone A., Phys. Rev. A, 88 (2013) 033401.

    Article  ADS  Google Scholar 

  99. Kang S., Affolderbach C., Gruet F., Calosso C. E. and Mileti G., Proceedings of the European Frequency and Time Forum (Neuchatel, Switzerland) 2014, p. 307.

  100. English T. C., Jechart E. and Kwon T. M., Proceedings 10th Precise Time and Time Interval Forum (Greenbelt, MD, USA) 1978, pp. 147–165.

  101. Lin J., Deng J., Ma Y., He H. and Wang Y., Opt. Lett., 37 (2012) 5036.

    Article  ADS  Google Scholar 

  102. Santarelli G., Audoin C., Makdissi A., Laurent P., Dick G. J. and Clairon A., IEEE Trans. Ultrason. Ferroelect. Freq. Control, 45 (1998) 887.

    Article  Google Scholar 

  103. Greenhall C., IEEE. Trans. Ultrason., Ferroelect., Freq. Contr., 45 (1998) 895.

    Article  Google Scholar 

  104. Joyet A., Mileti G., Dudle G. and Thomann P., IEEE Trans. Instrum. Meas., 50 (2001) 150.

    Article  Google Scholar 

  105. Francois B., Calosso C. E., Danet J. M. and Boudot R., Rev. Sci. Instrum., 85 (2014) 094709.

    Article  ADS  Google Scholar 

  106. Biedermann G. W., Takase K., Wu X., Deslauriers L., Roy S. and Kasevich M. A., Phys. Rev. Lett., 111 (2013) 170802.

    Article  ADS  Google Scholar 

  107. Micalizio S., Godone A., Levi F. and Vanier J., Phys. Rev. A, 73 (2006) 033414.

    Article  ADS  Google Scholar 

  108. Micalizio S., Godone A., Levi F. and Calosso C., IEEE Trans. Ultrason. Ferroelct. Freq. Control, 57 (2010) 1524.

    Article  Google Scholar 

  109. Calosso C. E., Godone A., Levi F. and Micalizio S., IEEE Trans. Ultrason. Ferroelct. Freq. Control, 59 (2012) 2646.

    Article  Google Scholar 

  110. Bandi T., Affolderbach C., Stefanucci C., Merli F., Skrivervik A. K. and Mileti G., IEEE Trans. Ultrason. Ferroelct. Freq. Control, 61 (2014) 1769.

    Article  Google Scholar 

  111. Godone A., Micalizio S., Levi F. and Calosso C., Rev. Sci. Instrum., 82 (2011) 074703.

    Article  ADS  Google Scholar 

  112. Einstein A., Physik. Z., XVIII (1917) 121.

    Google Scholar 

  113. Hansch T. W. and Schawlow A. L., Opt. Commun., 13 (1975) 68.

    Article  ADS  Google Scholar 

  114. Ketterle W., Martin A., Joffe A. M. and Pritchard D. E., Phys. Rev. Lett., 69 (1992) 2483.

    Article  ADS  Google Scholar 

  115. Guillot E., Pottie P.-E. and Dimarcq N., Opt. Lett., 26 (2001) 1639.

    Article  ADS  Google Scholar 

  116. Esnault F.-X., Holleville D., Rossetto N., Guerandel S. and Dimarcq N., Phys. Rev. A, 82 (2010) 033436.

    Article  ADS  Google Scholar 

  117. Wang Y. Z., Proceedings of the National Symposium on Frequency Standards (Chengdu, China) 1979.

  118. Enzer D. G. and Klipstein W. M., IEEE Trans. Ultrason. Ferroelct. Freq. Control, 53 (2006) 1564.

    Article  Google Scholar 

  119. Levi F., Calonico D., Calosso C. E., Godone A., Micalizio S. and Costanzo G. A., Metrologia, 51 (2014) 270.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Micalizio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godone, A., Levi, F., Calosso, C.E. et al. High-performing vapor-cell frequency standards. Riv. Nuovo Cim. 38, 133–171 (2015). https://doi.org/10.1393/ncr/i2015-10110-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2015-10110-4

Navigation