Skip to main content
Log in

Acoustic streaming in pulsating flows through porous media

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating cylinders subjected to an externally imposed steady flow. Results on the pressure drop associated with viscous losses will be compared with predictions from a simple analytical model in which the interaction between the streaming flows developed around the particles and between the oscillating and steady flows are neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sir Lighthill J., J. Sound Vib., 61 (1978) 391.

    Article  Google Scholar 

  2. Riley N., Annu. Rev. Fluid Mech., 33 (2001) 43.

    Article  ADS  Google Scholar 

  3. Komarov S. V., Advanced Topics in Mass Transfer, Chapter Application of Airborne Sound Waves for Mass Transfer Enhancement (InTech) 2011, pp. 61–86.

  4. Komarov Sergey V., Kuwabara Mamoru and Abramov Oleg V., ISIJ Int., 45 (2005) 1765.

    Article  Google Scholar 

  5. Valverde J. M., Ebri J. M. P. and Quintanilla M. A. S., Environ. Sci. Technol., 47 (2013) 9538.

    Article  ADS  Google Scholar 

  6. Garrett Steven L., Am. J. Phys., 72 (2004) 11.

    Article  ADS  Google Scholar 

  7. Gagnon J. O. and Paidoussis M. P., J. Fluids Struct., 8 (1994) 293.

    Article  ADS  Google Scholar 

  8. Yarin A. L., Brenn G., Kastner O., Rensink D. and Tropea C., J. Fluid Mech., 399 (1999) 151.

    Article  ADS  Google Scholar 

  9. Mugele Frieder, Staicu Adrian, Bakker Rina and van den Ende Dirk, Lab Chip., 11 (2011) 2011.

    Article  Google Scholar 

  10. Huang Po-Chuan, Chen Chih-Cheng and Hwang Hsiu-Ying, Int. J. Heat Mass Transf., 61 (2013) 696.

    Article  Google Scholar 

  11. Swift Greg W., Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America through the American Institute of Physics) 2002.

  12. Crouch T. N., Burton D., Brown N. A. T., Thompson M. C. and Sheridan J., J. Fluid Mech., 748 (2014) 5.

    Article  ADS  Google Scholar 

  13. Landau L. D. and Lifshitz E. M., Course of Theoretical Physics, chapter Fluid Mechanics (Pergamon Press, New York) 1995.

    Google Scholar 

  14. Wang Chang-Yi, J. Fluid Mech., 32 (1968) 55.

    Article  ADS  Google Scholar 

  15. Chong Kwitae, Kelly Scott D., Smith Stuart and Eldredge Jeff D., Phys. Fluids, 25 (2013) 033602.

    Article  ADS  Google Scholar 

  16. Lee Chun P. and Wang Taylor G., J. Acoust. Soc. Am., 88 (1990) 2367.

    Article  ADS  Google Scholar 

  17. Trinh E. H. and Robey J. L., Phys. Fluids, 6 (1994) 3567.

    Article  ADS  Google Scholar 

  18. Gopinath A. and Mills A. F., ASME: J. Heat Transf., 115 (1993) 332.

    Article  Google Scholar 

  19. Gopinath A. and Harder H. R., Int. J. Heat Mass Transf., 43 (2000) 505.

    Article  Google Scholar 

  20. Yavuzkurt S., Ha M. Y., Koopmann K. and Scaroni A. W., J. Energy Res. Technol., 113 (1991) 277.

    Article  Google Scholar 

  21. Jia X., Caroli C. and Velicky B., Int. J. Heat Mass Transf., 16 (1973) 1703.

    Article  Google Scholar 

  22. Haddon E. W. and Riley N., Q. J. Mech. Appl. Math., 32 (1979) 265.

    Article  Google Scholar 

  23. Yavuzkurt S., Ha M. Y., Reethof G., Koopmann G. and Scaroni A. W., J. Energy Res. Technol., 113 (1991) 286.

    Article  Google Scholar 

  24. Valverde J. M., Raganati F., Quintanilla M. A. S., Ebri J. M. P., Ammendola P. and Chirone R., Appl. Energy, 111 (2013) 538.

    Article  Google Scholar 

  25. Valverde Jose Manuel, Fluidization of Fine Powders: Cohesive versus Dynamical Aggregation, Vol. 18 of Particle Technology Series (Springer) 2013.

  26. Valverde Jose Manuel, Soft Matter, 9 (2013) 8792.

    Article  ADS  Google Scholar 

  27. Geldart D., Powder Technol., 7 (1973) 285.

    Article  Google Scholar 

  28. Castellanos A., Valverde J. M. and Quintanilla M. A. S., Phys. Rev. E, 64 (2001) 041304.

    Article  ADS  Google Scholar 

  29. Chirone R., Massimilla L. and Russo S., Chem. Engin. Sci., 48 (1993) 41.

    Article  Google Scholar 

  30. Ajbar A., Bakhbakhi Y., Ali S. and Asif M., Powder Technol., 206 (2011) 327.

    Article  Google Scholar 

  31. Ammendola P., Chirone R. and Raganati F., Chem. Engin. Process.: Process Intensif., 50 (2011) 885.

    Article  Google Scholar 

  32. Raganati F., Ammendola P. and Chirone R., Appl. Energy, 113 (2014) 1269.

    Article  Google Scholar 

  33. Farouk Bakhtier, Lin Yiqiang and Lei Zhiheng, in Cho Young I. and Greene George A. (Editors), Vol. 42 of Advances in Heat Transfer (Elsevier) 2010, pp. 1–136.

  34. Kunii D. and Levenspiel O., Fluidization Engineering, 2nd edition (Butterworth-Heinemann, Boston) 1991.

    Google Scholar 

  35. Yates J. G., Fundamentals of Fluidized-Bed Chemical Processes, Monographs in chemical engineering (Butterworths, London) 1983.

    Google Scholar 

  36. Gopinath Ashok and Trinh Eugene H., J. Acoust. Soc. Am., 108 (2000) 1514.

    Article  ADS  Google Scholar 

  37. Qi Quan, J. Acoust. Soc. Am., 94 (1993) 1090.

    Article  ADS  Google Scholar 

  38. Gopinath Ashok, Proc. R. Soc. London, Ser. A: Math. Phys. Engin. Sci., 456 (2000) 2419.

    Article  ADS  Google Scholar 

  39. Wilen L. A., J. Acoust. Soc. Am., 103 (1998) 1406.

    Article  ADS  Google Scholar 

  40. Wheatley John and Cox Arthur, Natural Engines. Print edition, 38 (1985) 50.

    Google Scholar 

  41. Yanagimoto K., Sakamoto S.-i., Kuroda K., Nakano Y. and Watanabe Y., in Kamakura T. and Sugimoto N. (Editors), Vol. 1474 of American Institute of Physics Conference Series (AIP) 2012, pp. 279–282.

  42. Arnott W. Pat, Bass Henry E. and Raspet Richard, J. Acoust. Soc. Am., 90 (1991) 3228.

    Article  ADS  Google Scholar 

  43. Swift G. W., AIP Conf. Proc., 524 (2000) 105.

    Article  ADS  Google Scholar 

  44. Berson Arganthal, Michard Marc and Blanc-Benon Philippe, Heat Mass Transf., 44 (2008) 1015.

    Article  ADS  Google Scholar 

  45. Aben P. C. H., Bloemen P. R. and Zeegers J. C. H., Exp. Fluids, 46 (2009) 631.

    Article  Google Scholar 

  46. Besnoin Etienne and Knio Omar M., Acta Acust. united Acust., 90 (2004) 432.

    Google Scholar 

  47. Weiland Nathan T. and Zinn Ben T., J. Acoust. Soc. Am., 116 (2004) 1507.

    Article  ADS  Google Scholar 

  48. Reid R. S., Ward W. C. and Swift G. W., Phys. Rev. Lett., 80 (1998) 4617.

    Article  ADS  MathSciNet  Google Scholar 

  49. Landsberg Peter T., Nature, 394 (1998) 623.

    Article  ADS  Google Scholar 

  50. Ödinç Çarpinlioglu Melda and Gündogdu Mehmet Yasar, Flow Meas. Instrum., 12 (2001) 163.

    Article  Google Scholar 

  51. Womersley J. R., J. Physiol., 127 (1955) 553.

    Article  Google Scholar 

  52. Runge T. M., Briceño J. C., Sheller M. E., Moritz C. E., Sloan L., Bohls F. O. and Ottmers S. E., Int. J. Artificial Organs, 16 (1993) 645.

    Article  Google Scholar 

  53. Pendyala Rajashekhar, Jayanti Sreenivas and Balakrishnan A. R., Nucl. Engin. Design, 238 (2008) 178.

    Article  Google Scholar 

  54. Zhao T. S. and Cheng P., Cryogenics, 36 (1996) 333.

    Article  ADS  Google Scholar 

  55. Helvensteijn B. P. M., Kashani A., Spivak A. L., Roach P. R., Lee J. M. and Kittel P., in Kittel Peter (Editor), Advances in Cryogenic Engineering, Vol. 43 (Springer) 1998, pp. 1619–1626.

  56. Ju Yonglin, Jiang Yan and Zhou Yuan, Cryogenics, 38 (1998) 649.

    Article  ADS  Google Scholar 

  57. Choi Sungryel, Nam Kwanwoo and Jeong Sangkwon, Cryogenics, 44 (2004) 203.

    Article  ADS  Google Scholar 

  58. Jin Li Wen and Leong Kai Choong, Transp. Porous Media, 72 (2008) 37.

    Article  Google Scholar 

  59. Riley N., Q. J. Mech. Appl. Math., 19 (1966) 461.

    Article  Google Scholar 

  60. Carman P. C., Chem. Engin. Research Design, 75 (1997) S32.

    Article  Google Scholar 

  61. Rietema K., The Dynamics of Fine Powders (Elsevier, London) 1991.

    Book  Google Scholar 

  62. Valverde J. M. and Castellanos A., Europhys. Lett., 75 (2006) 985.

    Article  ADS  Google Scholar 

  63. Guo Zhixiong, Kim Seo Young and Sung Hyung Jin, Int. J. Heat Mass Transf., 40 (1997) 4209.

    Article  Google Scholar 

  64. Yen Yueh-Liang, Huang Po-Chuan, Yang Chao-Fu and Chen Yen-Jen, Numer. Heat Transfer, Part A: Appl., 54 (2008) 426.

    Article  ADS  Google Scholar 

  65. Ghafarian Mohsen, Mohebbi-Kalhori Davod and Sadegi Jafar, Int. J. Therm. Sci., 66 (2013) 42.

    Article  Google Scholar 

  66. Chen Shoei-Sheng, Nucl. Engin. Design, 35 (1975) 399.

    Article  Google Scholar 

  67. Paidoussis M. P., J. Fluids Struct., 22 (2006) 741.

    Article  ADS  Google Scholar 

  68. Pomirleanu Radu, J. Pressure Vessel Technol., 130 (2008) 041303.

    Article  Google Scholar 

  69. Lin W. H., J. Appl. Math. Mech., 67 (1987) 487.

    Google Scholar 

  70. Coenen W. and Riley N., Q. J. Mech. Appl. Math., 62 (2009) 53.

    Article  Google Scholar 

  71. Batchelor G. K., An Introduction to Fluid Dynamics (Cambridge University Press) 2002.

  72. Donea J. and Huerta A., Finite Element Methods for Flow Problems (Wiley) 2003.

  73. Ahrens J. and Spors S., IEEE Trans. Audio, Speech, Language Process., 18 (2010) 2038.

    Article  Google Scholar 

  74. Dalloz-Dubrujeaud Blanche, Faure Roland, Tadrist Lounés and Giraud Guy, C. R. Acad. Sci. Ser. IIB, Mech. Phys. Astron., 328 (2000) 231.

    ADS  Google Scholar 

  75. Brooks A. N. and Hughes T. J. R., Comput. Meth. Appl. Mech. Engin., 32 (1982) 199.

    Article  ADS  Google Scholar 

  76. Franca L. P., Frey S. L. and Hughes T. J. R., Comput. Meth. Appl. Mech. Engin., 95 (1992) 253.

    Article  ADS  Google Scholar 

  77. Franca L. P. and Frey S. L., Comput. Meth. Appl. Mech. Engin., 99 (1992) 209.

    Article  ADS  Google Scholar 

  78. Ramm E. and Wall W., Fluid-structure interaction based upon a stabilized (ale) finite element method, Technical Report, CIMNE, Barcelona, Spain (1998).

    Google Scholar 

  79. Chung J. and Hulbert G. M., J. Appl. Mech., 60 (1993) 371.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Valverde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, J.M., Durán-Olivencia, F.J. Acoustic streaming in pulsating flows through porous media. Riv. Nuovo Cim. 37, 591–619 (2014). https://doi.org/10.1393/ncr/i2014-10106-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2014-10106-6

Navigation