Skip to main content
Log in

High-energy proton cross sections

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

The measurements of the total, elastic and diffractive proton-proton cross sections at high energies are shown. The article mainly focuses on the recent results of the experiments at the Large Hadron Collider and on the methods and techniques used to perform the measurements. The general properties of the scattering amplitude are also presented, together with the main aspects of some of the most successful theoretical models, whose predictions are compared with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regge T., Nuovo Cimento, 14 (1959) 952.

    Article  Google Scholar 

  2. Regge T., Nuovo Cimento, 18 (1960) 947.

    Article  Google Scholar 

  3. Squires E. J., Complex angular momentum and particle physics (Benjamin, New York) 1963.

  4. Collins P. D. B., An introduction to Regge theory and high energy physics (Cambridge University Press, Cambridge, UK) 1977.

    Book  Google Scholar 

  5. Caneschi L., Regge theory of low-pt hadronic interactions (North-Holland, Amsterdam) 1989.

  6. Levin E., Everything about Reggeons, report Desy 97-213 (hep-ph/9710546) 1997.

  7. Beringer J. et al. (Particle Data Group), Phys. Rev. D, 86 (2012) 010001.

    Article  ADS  Google Scholar 

  8. Donnachie A. and Landshoff P. V., Phys. Lett. B, 296 (1992) 227.

    Article  ADS  Google Scholar 

  9. Henzi R. and Valin P., Phys. Lett. B, 132 (1983) 443-448.

    Article  ADS  Google Scholar 

  10. Cheng H. and Wu T. T., Expanding protons. Scattering at high energies (MIT Press, Cambridge) 1987.

    Google Scholar 

  11. Wu T. T. and Yang C. N., Phys. Rev., 137 (1965) B708.

    Article  ADS  Google Scholar 

  12. Bourrely C., Soffer J. and Wu T. T., Z. Phys., 369 (1988) C37.

    Google Scholar 

  13. Bourrely C., Soffer J., Wu T. T., Phys. Lett., 287 (1990) B252.

    Google Scholar 

  14. Block M. M., Phys. Rep., 436 (2006) 71-215.

    Article  ADS  Google Scholar 

  15. Block M. M. et al., Phys. Rev. D, 60 (1999) 054024.

    Article  ADS  Google Scholar 

  16. Altarelli G. and Parisi G., Nucl. Phys. B, 26 (1977) 298.

    Article  ADS  Google Scholar 

  17. Balitsky Y. Y. and Lipatov L. N., Sov. J. Nucl. Phys., 28 (1978) 822.

    Google Scholar 

  18. Bethe H., Ann. Phys. (N.Y.), 3 (1958) 190.

    Article  ADS  Google Scholar 

  19. West G. B. and Yennie D. R., Phys. Rev., 172 (1968) 1413.

    Article  ADS  Google Scholar 

  20. Yennie D. R. et al., Ann. Phys. (N.Y.), 13 (1961) 379.

    Article  ADS  Google Scholar 

  21. Rix J., Thaler R. M., Phys. Rev., 152 (1966) 1357.

    Article  ADS  Google Scholar 

  22. Locher M. P., Nucl. Phys. B, 2 (1967) 525.

    Article  ADS  Google Scholar 

  23. Kundrat V. and Lokajicek M., Z. Phys. C, 63 (1994) 619.

    Article  ADS  Google Scholar 

  24. Kundrat V. et al., Phys. Rev. D, 35 (1987) 1719.

    Article  ADS  Google Scholar 

  25. Petrov V. A. and Prokudin A. V., Eur. Phys. J. C, 23 (2002) 135.

    Article  ADS  Google Scholar 

  26. Islam M. M. et al., Int. J. Mod. Phys. A, 21 (2006) 1.

    Article  ADS  Google Scholar 

  27. TOTEM Collaboration, JINST, 3 (2008) S08007.

    Google Scholar 

  28. Kaspar J., Elastic scattering at the LHC, CERN-THESIS-2011-214 2011.

  29. Cudell J. R. et al., Phys. Rev. Lett., 89 (2002) 201801.

    Article  ADS  Google Scholar 

  30. Augier C. et al., Phys. Lett. B, 315 (1993) 503.

    Article  ADS  Google Scholar 

  31. Honda M. et al., Phys. Rev. Lett., 70 (1993) 525.

    Article  ADS  Google Scholar 

  32. Baltrusaitis R. M. et al., Phys. Rev. Lett., 52 (1984) 1380.

    Article  ADS  Google Scholar 

  33. UA4 Collaboration, Phys. Lett. B, 147 (1984) 392.

    Article  Google Scholar 

  34. Donnachie A. and Landshoff P. V., Z. Phys. C, 2 (1979) 55.

    Article  ADS  Google Scholar 

  35. Matthiae G., Rep. Prog. Phys., 57 (1994) 743.

    Article  ADS  Google Scholar 

  36. Barshay S. et al., Z. Phys. C, 56 (1992) 77.

    Article  ADS  Google Scholar 

  37. Goulianos K., Phys. Lett. B, 358 (1995) 379.

    Article  ADS  Google Scholar 

  38. TOTEM Collaboration, Letter of Intent, CERN/LHCC 97-49, 1997.

  39. Goulianos K. and Montanha J., Phys. Rev. D, 59 (1999) 114017.

    Article  ADS  Google Scholar 

  40. TOTEM Collaboration, TOTEM Technical Design Report, CERN-LHCC-2004-002 2004.

  41. TOTEM Collaboration, TOTEM Technical Design Report - Addendum, CERN-LHCC-2004 -020 2004.

  42. Ruggiero G. et al., Nucl. Instr. Meth. A, 582 (2007) 854.

    Article  ADS  Google Scholar 

  43. ATLAS Collaboration, ATLAS Forward Detectors TDR, CERN-LHCC-2008-004.

  44. Khoze V. et al., Eur. Phys. J. C, 69 (2010) 85.

    Article  ADS  Google Scholar 

  45. TOTEM Collaboration, EPL, 95 (2011) 41001.

    Article  ADS  Google Scholar 

  46. CMS Collaboration, Measurement of pp diffraction dissociation cross sections at √s = 7 TeV at the LHC, CMS-PAS-FSQ-12-005.

  47. CMS Collaboration, Measurement of CMS luminosity, CMS-PAS-EWK-10-004.

  48. Van der Meer S., Calibration of the effective beam height in the ISR, CERN-ISR-PO/68-31.

  49. TOTEM Collaboration, EPL, 96 (2011) 21002.

    Article  ADS  Google Scholar 

  50. TOTEM Collaboration, EPL, 95 (2011) 41001.

    Article  ADS  Google Scholar 

  51. TOTEM Collaboration, EPL, 101 (2013) 21002.

    Article  ADS  Google Scholar 

  52. ALICE Collaboration, CERN, PH-EP-2012-238 (2012).

  53. ATLAS Collaboration, Nat. Commun., 2 (2011) 463.

    Article  ADS  Google Scholar 

  54. CMS Collaboration, CERN, PH-EP-2012-293 (2012).

  55. TOTEM Collaboration, EPL, 101 (2013) 21003.

    Article  ADS  Google Scholar 

  56. TOTEM Collaboration, EPL, 101 (2013) 21004.

    Article  ADS  Google Scholar 

  57. TOTEM Collaboration, Phys. Rev. Lett., 111 (2013) 012001.

    Article  Google Scholar 

  58. TOTEM Collaboration, Phys. Rev. Lett., 111 (2013) 262001.

    Article  Google Scholar 

  59. Sjöstrand T., Mrenna S. and Skands P., JHEP, 05 (2006) 026.

    Article  ADS  Google Scholar 

  60. Engel R., Z. Phys. C, 66 (1995) 203.

    Article  ADS  Google Scholar 

  61. Belov K. et al., Nucl. Phys. B, Proc. Suppl., 151 (2006) 197.

    Article  Google Scholar 

  62. Pierre Auger Collaboration, Phys. Rev. Lett., 109 (2012) 062002.

    Article  Google Scholar 

  63. EAS-TOP Collaboration, Astropart. Phys., 21 (2004) 583-596.

    ADS  Google Scholar 

  64. ARGO-YBJ Collaboration, Phys. Rev. D, 80 (2009) 092004.

    Article  ADS  Google Scholar 

  65. Engel R. et al., Phys. Rev. D, 58 (1998) 014019.

    Article  ADS  Google Scholar 

  66. Glauber R. J., Phys. Rev., 100 (1955) 242.

    Article  ADS  Google Scholar 

  67. Glauber R. J. and Matthiae G., Nucl. Phys. B, 21 (1970) 135-157.

    Article  ADS  Google Scholar 

  68. Kalmykov N. and Ostapchenko S., Phys. At. Nucl., 56 (1993) 346.

    Google Scholar 

  69. Good M. and Walker W., Phys. Rev., 120 (1960) 1857.

    Article  ADS  Google Scholar 

  70. HARP Collaboration, Astropart. Phys., 29 (2008) 257.

    Article  ADS  Google Scholar 

  71. HARP Collaboration, Astropart. Phys., 30 (2008) 124.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catanesi, M.G., Ferro, F. High-energy proton cross sections. Riv. Nuovo Cim. 37, 333–373 (2014). https://doi.org/10.1393/ncr/i2014-10101-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2014-10101-y

Navigation