Skip to main content
Log in

Gravitational waves: From discovery to astronomy

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Efforts to detect gravitational waves from violent events in the cosmos, the only ones at least initially detectable, had a turning point when long baseline measurements of tiny differential displacements of test masses were demonstrated with laser interferometric detectors on ground and shown feasible for space missions. With the advent on a five year time frame of advanced versions of the km baseline ground-based interferometers and, somewhat later, of a million km space-based interferometer, a wide band, 0.1mHz to 10kHz, will be complementarily explored. Progress in relativistic astrophysics and numerical relativity have meanwhile focused on amplitudes and rates of a number of classes of gravitational wave (GW) generating events, estimating confidently the ranges of expected GW signals. The purpose of this review is to give an outlook on the initial crop of GW observations, on their impact in fundamental physics, in relativistic astrophysics and in cosmology, and give also an updated view of the methods and technologies, which are making possible the historical achievement of opening the era of GW astronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pais A., Subtle is the Lord (Oxford University Press) 1982, pp. 278–281.

  2. Amaldi E. and Pizeelaa G., Relativity, Quanta, and Cosmology, Vol. 1, edited by Pantaleo M. and De Finis F. (1980), pp. 9–139.

  3. Maggiore M., Gravitational Waves, Vol. 1 (Oxford University Press) 2008.

  4. Garfinkle D., Am. J. Phys., 74 (2006) 196.

    Article  ADS  Google Scholar 

  5. Peters P. C. and Mathews J., Phys. Rev., 131 (1963) 435.

    Article  ADS  MathSciNet  Google Scholar 

  6. Will C., Living Rev. Relativ., 9 (2006) 3 http://www.livingreviews.org/lrr-2006-3.

    Article  ADS  Google Scholar 

  7. Kramer M. and Wex N., Class. Quantum Grav., 26 (2009) 073001.

    Article  ADS  Google Scholar 

  8. Forward R., Phys. Rev. D, 17 (1978) 379.

    Article  ADS  Google Scholar 

  9. Pitkin M., Reid S., Rowan S. and Hough J., Gravitational Wave Detection by Interferometry (Ground and Space), in Living Rev. Relativ., 14 (2011) 5 http://www.livingreviews.org/lrr-2011-5.

    Article  ADS  MATH  Google Scholar 

  10. Sathyaprakash B.S. and Schutz B.F., Living Rev. Relativ., 12 (2009) 2 http://www.livingreviews.org/lrr-2009-2.

    Article  ADS  Google Scholar 

  11. Cerdonio M., Class. Quantum Grav., 20 (2003) S23.

    Article  ADS  Google Scholar 

  12. Astore P. et al. (ROG Collaboration), Phys. Rev. Lett., 91 (2003) 111101.

    Article  ADS  Google Scholar 

  13. http://www.auriga.lnl.infn.it/.

  14. Baggio L. et al., Phys. Rev. Lett., 94 (2005) 241101.

    Article  ADS  Google Scholar 

  15. Astone P. et al., Phys. Rev. D, 68 (2003) 022001.

    Article  ADS  Google Scholar 

  16. Astone P. et al., Phys. Rev. D, 76 (2007) 102001.

    Article  ADS  Google Scholar 

  17. Astone P. et al., Phys. Rev. D, 82 (2010) 022003.

    Article  ADS  Google Scholar 

  18. Astone P. et al. (ROG Collaboration), Phys. Lett. B, 385 (1996) 421.

    Article  ADS  Google Scholar 

  19. Baggio L. et al, Phys. Rev. Lett., 95 (2005) 081103.

    Article  ADS  Google Scholar 

  20. Baggio L. et al, Phys. Rev. Lett., 95 (2005) (E)139903.

    Article  ADS  Google Scholar 

  21. http://www.roma1.infn.it/rog/nautilus/.

  22. Aguiar O. D., Res. Astron. Astrophys., 10 (2010) 1.

    Article  Google Scholar 

  23. Cerdonio M. et al., Phys. Rev. Lett., 87 (2001) 031101.

    Article  ADS  Google Scholar 

  24. Bonaldi M. et al., Phys. Rev. D, 68 (2003) 102004.

    Article  ADS  Google Scholar 

  25. Briant T. et al., Phys. Rev. D, 67 (2003) 102005.

    Article  ADS  Google Scholar 

  26. Armstrong J. W., Living Rev. Relativ., 9 (2006) 1 http://http://www.livingreviews.org/lrr-2006-1.

    Article  ADS  Google Scholar 

  27. https://gwic.ligo.org/.

  28. Ciufolini I., Nature, 449 (2007) 41.

    Article  ADS  Google Scholar 

  29. Everitt C. W., Phys. Rev. Lett., 106 (2011) 221101.

    Article  ADS  Google Scholar 

  30. Ciufolini I. and Pavlis E. C., Nature, 431 (2004) 958.

    Article  ADS  Google Scholar 

  31. Finn L. S., Phys. Rev. D, 79 (2009) 022002.

    Article  ADS  Google Scholar 

  32. Cornish N. J., Phys. Rev. D, 80 (2009) 087101.

    Article  ADS  Google Scholar 

  33. Estabrook F. B. and Wahlquist H. D., Gen. Relat. Gravit., 6 (1975) 439.

    Article  ADS  Google Scholar 

  34. Detweiler S., Astrophys. J., 234 (1979) 1100.

    Article  ADS  Google Scholar 

  35. Misner C.W., Thorne K. and Wheeler J., Gravitation (W. H. Freeman & Co., S. Francisco) 1973.

  36. Weinberg S., Gravitation and cosmology (John Wiley & Sons, New York) 1972.

  37. Weiss R., Quart. Progr. Rep. Research Lab. Electron. MIT, 105 (1973) 54.

    Google Scholar 

  38. Fortini P. L. and Ortolan A., Nuovo Cimento B, 106 (1991) 101.

    Article  ADS  Google Scholar 

  39. Centrella J. et al., Rev. Mod. Phys., 82 (2010) 3069.

    Article  ADS  MathSciNet  Google Scholar 

  40. Baumgarte T. W. and Shapiro S. L., Phys. Today, 64 (2011) 32.

    Article  Google Scholar 

  41. Saulson P. R., Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific) 1994.

  42. Bernardini M. et al., Class. Quantum Grav., 15 (1998) 1.

    Article  Google Scholar 

  43. Callen H. B. and Welton T. A., Phys. Rev., 83 (1951) 34.

    Article  ADS  MathSciNet  Google Scholar 

  44. Zener C., Elasticity and anelasticity of metals (University of Chicago Press) 1948.

  45. Saulson P. R., Phys. Rev. D, 42 (1990) 2437.

    Article  ADS  Google Scholar 

  46. Acernese F. et al. (The Virgo Collaboration), Appl. Opt., 46 (2007) 3466.

    Article  ADS  Google Scholar 

  47. Accadia T. et al. (The Virgo Collaboration), JINST, 7 (2012) P030012.

    Article  Google Scholar 

  48. Vinet J. Y. et al., Phys. Rev. D, 56 (1997) 6085.

    Article  ADS  Google Scholar 

  49. Accadia T. et al. (The Virgo Collaboration), Astropart. Phys., 34 (2011) 227.

    Google Scholar 

  50. Accadia T. et al. (The Virgo Collaboration), Astropart. Phys., 34 (2011) 521.

    Article  ADS  Google Scholar 

  51. Ando M. et al. (The Tama Collaboration), Phys. Rev. Lett., 86 (2001) 3950.

    Article  ADS  Google Scholar 

  52. Abbot B. et al. (The Ligo Scientific Collaboration), Rep. Progr. Phys., 72 (2009) 076901.

    Article  ADS  Google Scholar 

  53. Acernese F. et al. (The Virgo Collaboration), Class. Quantum Grav., 25 (2008) 114045.

    Article  ADS  Google Scholar 

  54. Grote H et al. (The GEO600 Collaboration), Class. Quantum Grav., 25 (2008) 114043.

    Article  ADS  Google Scholar 

  55. Cella G. and Giazotto A., Rev. Sci. Instrum., 82 (2011) 101101.

    Article  ADS  Google Scholar 

  56. Acernese F. et al. (The Virgo Collaboration), Class. Quantum. Grav., 22 (2005) S869.

    Article  Google Scholar 

  57. Frey R. E. (for the Ligo Scientific Collaboration), AIP Conf. Proc., 928 (2007) 11.

    Article  ADS  Google Scholar 

  58. Vocca H. (for the Virgo Collaboration), Progresses in the realization of a monolithic suspension system in Virgo, in Proceedings of the 12th Marcel Grossman Meeting on General Relativity (MG12), Paris, France, 2009, edited by Damour T., Jantzen R. T. and Ruffini R. (World Scientific) 2012, p. 1657.

  59. Abadie J., et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Phys. Rev. D, 81 (2010) 102001.

    Article  ADS  Google Scholar 

  60. The Ligo Scientific Collaboration and The Virgo Collaboration, Nature, 460 (2009) 990.

    Article  ADS  Google Scholar 

  61. Abbott B. P. et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Astrophys. J., 713 (2010) 671.

    Article  ADS  Google Scholar 

  62. Abbott B. P. et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Astrophys. J., 715 (2010) 1438.

    Article  ADS  Google Scholar 

  63. Abadie J. et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Astrophys. J., 715 (2010) 1453.

    Article  ADS  Google Scholar 

  64. Kuroda K. (on behalf of the LCGT Collaboration), Class. Quantum Grav., 27 (2010) 084004.

    Article  ADS  Google Scholar 

  65. Acernese F. et al. (The Virgo Collaboration), Astropart. Phys., 33 (2010) 182

    Article  ADS  Google Scholar 

  66. Hild S. et al., Class. Quantum Grav., 26 (2010) 055012.

    Article  ADS  Google Scholar 

  67. Ligo Scientific Collaboration, Nat. Phys. DOI: 10.1038/nphys2083 (2011).

  68. Lorenzini M. (for The Virgo Collaboration), Class. Quantum Grav., 27 (2010) 084021.

    Article  ADS  Google Scholar 

  69. Fairhurst S. et al., Gen. Relativ. Gravit., 43 (2010) 387.

    Article  ADS  Google Scholar 

  70. Abadie J. et al. (The Ligo Collaboration and The Virgo Collaboration), Phys. Rev. D, 81 (2010) 102001.

    Article  ADS  Google Scholar 

  71. Abadie J. et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Astrophys. J., 734 (2011) L35.

    Article  ADS  Google Scholar 

  72. Abadie J. et al. (The Ligo Scientific Collaboration), Phys. Rev. D, 83 (2011) 042001.

    Article  ADS  Google Scholar 

  73. Abbott B. P. et al. (The Ligo Scientific Collaboration), Phys. Rev. D, 80 (2009) 047101.

    Article  ADS  Google Scholar 

  74. Abadie J. et al. (The Ligo Collaboration and The Virgo Collaboration), Phys. Rev. D, 82 (2010) 102001.

    Article  ADS  Google Scholar 

  75. Abadie J. et al. (The Ligo Collaboration and The Virgo Collaboration), Phys. Rev. D, 83 (2011) 122005.

    Article  ADS  Google Scholar 

  76. Abbott B. P. et al. (The Ligo Scientific Collaboration), Phys. Rev. D, 76 (2007) 042001.

    Article  ADS  Google Scholar 

  77. Abbott B. P. et al. (The Ligo Scientific Collaboration), Astrophys. J., 683 (2008) L45.

    Article  ADS  Google Scholar 

  78. Abadie J. et al. (The Ligo Collaboration and The Virgo Collaboration), Astrophys. J., 737 (2011) 93.

    Article  ADS  Google Scholar 

  79. Braccini S. et al. (The Virgo Collaboration), Astropart. Phys., 23 (2005) 557.

    Article  ADS  Google Scholar 

  80. Losurdo G. et al., Rev. Sci. Instrum., 70 (1999) 2508.

    Article  ADS  Google Scholar 

  81. Losurdo G. et al., Rev. Sci. Instrum., 72 (2001) 3653.

    Article  ADS  Google Scholar 

  82. Acernese F. et al. (The Virgo Collaboration), Astropart. Phys., 20 (2004) 629.

    Article  ADS  Google Scholar 

  83. Harry G. M. (for the Ligo Scientific Collaboration), Class. Quantum Grav., 27 (2010) 084006.

    Article  ADS  Google Scholar 

  84. Giaime J. et al., Rev. Sci. Instrum., 67 (1999) 208.

    Article  ADS  Google Scholar 

  85. Abbott B. P. et al., Class. Quantum Grav., 19 (2002) 1591.

    Article  ADS  Google Scholar 

  86. Heptonstall A. et al., LIGO internal report http://www.ligo.caltech.edu/docs/T/T050206-00.pdf (2005).

  87. Rowan S. et al., Phys. Lett. A, 233 (1997) 303.

    Article  ADS  Google Scholar 

  88. Cunningham L. et al., Phys. Lett. A, 374 (2010) 3993.

    Article  ADS  Google Scholar 

  89. Shoemaker D. H. et al., Phys. Rev. D, 38 (1988) 423.

    Article  ADS  Google Scholar 

  90. Shoemaker D. H., Brillet A., Man C. A. and Cregut O., Opt. Lett., 14 (1989) 609.

    Article  ADS  Google Scholar 

  91. Cregut O. et al., Phys. Lett. A, 140 (1989) 284.

    Article  ADS  Google Scholar 

  92. Bondu F., Fritschel P., Man C. A. and Brillet A., Opt. Lett., 21 (1996) 582.

    Article  ADS  Google Scholar 

  93. Barillet R. et al., Meas. Sci. Technol., 7 (1996) 162.

    Article  ADS  Google Scholar 

  94. Willke B. et al., Class. Quantum Grav., 25 (2008) 114040.

    Article  ADS  Google Scholar 

  95. Winkellman L. et al., Appl. Phys. B, 102 (2011) 529.

    Article  ADS  Google Scholar 

  96. Cimma B. et al., Appl. Opt., 45 (2006) 1436.

    Article  ADS  Google Scholar 

  97. Martin I. W. et al., Class. Quantum Grav., 25 (2008) 055005.

    Article  ADS  Google Scholar 

  98. Hello P. and Vinet J. Y., Phys. Lett. A, 178 (1993) 351.

    Article  ADS  Google Scholar 

  99. Lück H. et al., Class. Quantum Grav., 21 (2004) S985.

    Article  Google Scholar 

  100. Lawrence R. et al., Class. Quantum Grav., 19 (2002) 1803.

    Article  ADS  Google Scholar 

  101. Lawrence R., Active wavefront correction in laser interferometric gravitational wave detectors, http://hdl.handle.net/1721.1/29308, Phd Thesis, MIT (2003).

  102. Kelly T. L. et al., Appl. Opt., 46 (2007) 861.

    Article  ADS  Google Scholar 

  103. Meers B. J., Phys. Rev. D, 38 (1998) 2317.

    Article  ADS  Google Scholar 

  104. The Virgo Collaboration, Advanced Virgo Technical Design Report, https://pub3.ego-gw.it/itf/tds/file.php?callFile=VIR-0128A-12.pdf (2012).

  105. Walls D. F., Nature, 306 (1983) 141.

    Article  ADS  Google Scholar 

  106. Eberle T. et al., Phys. Rev. Lett., 104 (2010) 251102.

    Article  ADS  Google Scholar 

  107. Abadie J. et al. (The Ligo Collaboration and The Virgo Collaboration), Class. Quantum Grav., 27 (2010) 173001.

    Article  ADS  Google Scholar 

  108. Fairhurst S., Improved source localization with LIGO India, arXiv:1205.6611v1 (2012).

  109. Uchiyama T. et al., to be published in Phys. Rev. Lett. (2012) arXiv:1202.3558.

    Google Scholar 

  110. Accadia T. et al. (The Virgo Collaboration), in Proceedings of the 12th Marcel Grossman Meeting on General Relativity (MG12), Paris, France, 2009, edited by Damour T., Jantzen R. T. and Ruffini R. (World Scientific) 2012, p. 1738.

  111. Halzen F. and Klein S. R., Rev. Sci. Instrum., 81 (2010) 081101.

    Article  ADS  Google Scholar 

  112. Katz U. F. (the Km3net Consortium), Nucl. Instrum. Methods A, 626–627 (2011) S57.

    Article  ADS  Google Scholar 

  113. Baret B. et al., J. Phys. Conf. Ser., 363 (2012) 012022.

    Article  Google Scholar 

  114. Abernathy M. et al. (The ET science team), Einstein gravitational wave Telescope conceptual design study, https://tds.ego-gw.it/itf/tds/file.php?callFile=ET-0106C-10.pdf (2010).

  115. Punturo M. et al., Class. Quantum Grav., 27 (2010) 084007.

    Article  ADS  Google Scholar 

  116. Winkler W. et al., Plans for a large gravitational wave antenna in Germany - MPQ Report 101, 1985, presented by A. Rudiger at the 4th Marcel Grossmann Meeting, Rome 1985.

  117. Abernathy M. et al. (The ET Science Team), Einstein gravitational wave Telescope - Conceptual Design Study https://tds.ego-gw.it/itf/tds/file.php?callFile=ET-0106C-10.pdf (2011).

  118. Jennrich O., Class. Quantum Grav., 26 (2009) 153001.

    Article  ADS  Google Scholar 

  119. Vitale S., Space Res. Today, 175 (2009) 5.

    Article  Google Scholar 

  120. Amaro-Seone P., arXiv 1201.3621v1 (2012); arXiv 1202.0839v1 (2012).

  121. Folkner W. M. et al., Class. Quantum Grav., 14 (1997) 1405.

    Article  ADS  Google Scholar 

  122. Clohessy W. H. and Wiltshire R. S., J. Aerospace Sci., 27 (1960) 653.

    Article  Google Scholar 

  123. Sweetser T. H., Class. Quantum Grav., 22 (2005) S429.

    Article  ADS  Google Scholar 

  124. Dhurandhar S. V. et al., Class. Quantum Grav., 22 (2005) 481.

    Article  ADS  Google Scholar 

  125. Sweetser T. H., in Astrodynamics 2005, Advances in Astronautical Sciences, 123 (2006).

  126. Bender P. L., Class. Quantum Grav., 20 (2003) 301.

    Article  ADS  Google Scholar 

  127. Cerdonio M. et al., Class. Quantum Grav., 27 (2010) 165007.

    Article  ADS  MathSciNet  Google Scholar 

  128. Dolesi R. et al., Phys. Rev. D, 84 (2011) 063007.

    Article  ADS  Google Scholar 

  129. Vitale S., Space Sci. Rev., 148 (2009) 441.

    Article  ADS  Google Scholar 

  130. Carbone L. et al., Phys. Rev. Lett. 91 (2003) 151101; Phys. Rev. D, 76 (2007) 102003.

    Google Scholar 

  131. Antonucci F. et al., Class. Quantum Grav., 28 (2011) 094002.

    Article  ADS  Google Scholar 

  132. Nayak R. et al., Class. Quantum Grav., 26 (2006) 1763.

    Article  ADS  Google Scholar 

  133. Tinto M. and Dhurandhar S. V., Living Rev. Relativ., 8 (2005) 4 http://www.livingreviews.org/lrr-2005-4.

    Article  ADS  Google Scholar 

  134. deVine G. et al., Phys. Rev. Lett., 104 (2010) 211103.

    Article  ADS  Google Scholar 

  135. For a comprehensive recent discussion of LISA long-arm interferometry, see Thorpe J. I., Class. Quantum Grav., 27 (2010) 084008.

    Article  Google Scholar 

  136. Rosado P. A., arXiv 1106.5795 (2011).

  137. Nelemans G., Phys. Today, 59 (2006) 26.

    Article  Google Scholar 

  138. “LISA Unveiling the hidden Universe”, ESA/SRE(2011)3, February 2011 —also known as “LISA Yellow Book”.

  139. Nishizawa A. et al., arXiv 1110.2865v1 (2011).

  140. Kawamura S. et al., Class. Quantum Grav., 28 (2011) 094011.

    Article  ADS  Google Scholar 

  141. Phinney E. S. et al., “The Big Bang Observer”, NASA Mission Concept Study (2003).

  142. Schutz B. et al., Science White Paper submitted to the Astro2010 Decadal Survey, arXiv 0903.0100 (2009).

  143. Baker J. G. et al., Phys. Rev. D, 75 (2007) 124024.

    Article  ADS  Google Scholar 

  144. Abadie J.et al. (The Ligo Collaboration and The Virgo Collaboration), Class. Quantum Grav., 27 (2010) 173001.

    Article  ADS  Google Scholar 

  145. Sekiguchi Y. et al., Phys. Rev. Lett., 107 (2001) 051102.

    Article  ADS  Google Scholar 

  146. Kyutoku K. et al., Phys. Rev. D 84 (2011) 064018.

    Article  ADS  Google Scholar 

  147. For a recent review see Shibata M. and Taniguchi K. Living Rev. Relativ. 14 (2011) 6 http://www.livingreviews.org/lrr-2011-6.

    Article  ADS  Google Scholar 

  148. Casares J., arXiv astro-ph/0503071v1 (2005).

  149. Hooper S. et al., arXiv, 1108.3186 (2011).

  150. For a recent review see Duez M. D. Class. Quantum Grav., 27 (2010) 114002.

    Article  ADS  MathSciNet  Google Scholar 

  151. Conselice C. J., Phys. Today, 64 (2011) 68.

    Article  Google Scholar 

  152. Preto M. et al., Astrophys. J., L732 (2011) 26.

    Article  ADS  Google Scholar 

  153. Filloux C. et al., Int. J. Mod. Phys D, 20 (2011) 2399

    Article  ADS  Google Scholar 

  154. Sesana A. et al., Class. Quantum Grav., 26 (2009) 4033.

    Article  Google Scholar 

  155. Volonteri M., Astron. Astrophys. Rev., 18 (2010) 279.

    Article  ADS  Google Scholar 

  156. For an introduction to black-holes see, for instance, Ryder L. Introduction to General Relativity, Chapt. 7. (Cambridge University Press) 2009.

  157. Lasota J. P., C. R. Phys., 8 (2007) 45.

    Article  ADS  Google Scholar 

  158. Huwyler C. et al., arXiv, 1108.1826v1 (2011).

  159. Cornish N. et al., arXiv, 1105.2088v2 (2011).

  160. Kokkotas K. D. and Schmidt B., Living Rev. Relativ., 2 (1999) 2 http://www.livingreviews.org/lrr-1999-2.

    Article  ADS  Google Scholar 

  161. Berti E. et al., Phys. Rev. D, 76 (2007) 104044.

    Article  ADS  Google Scholar 

  162. Berti E. et al., Phys. Rev. D 73 (2006) 064030.

    Article  ADS  Google Scholar 

  163. Li T. G. F., arXiv 1111.5274v1 (2011).

  164. Gossan S. et al., arXiv 1111.5819v1 (2011).

  165. Sereno M. et al., Phys. Rev. Lett., 105 (2010) 251101.

    Article  ADS  Google Scholar 

  166. Christodoulou D., Phys. Rev. Lett., 67 (1991) 1486.

    Article  ADS  MathSciNet  Google Scholar 

  167. Favata M., Astrophys. J., 696 (2009) L159; Favata M., arXiv 1108.3121v1 (2011).

    Article  ADS  Google Scholar 

  168. Janet F. et al., An Astro2010 Decadal Survey activity submission, arXiv 0909.1058v1 (2009).

  169. Sesana A. et al., Mon. Not. R. Astron. Soc., 394 (2009) 2255.

    Article  ADS  Google Scholar 

  170. Yunes N. et al., Phys. Rev. D, 81 (2010) 064018.

    Article  ADS  Google Scholar 

  171. Schutz B. F., Nature, 323 (1986) 310.

    Article  ADS  Google Scholar 

  172. Holz D. E. and Hughes S. A., Astrophys. J., 629 (2005) 15.

    Article  ADS  Google Scholar 

  173. Hughes S. A., Class. Quantum Grav., 20 (2003) S63.

    Article  Google Scholar 

  174. Petiteau A. et al., arXiv 1102.0769v1 (2011).

  175. Hirata C. M. et al., arXiv 1004.3988v2 (2010).

  176. Shapiro C. et al., Mon. Not. R. Astron. Soc., 404 (2010) 858.

    Article  ADS  Google Scholar 

  177. Del Pozzo W., arXiv 1108.1317v1 (2011).

  178. Taylor S. R., arXiv 1108.5161v1 (2011).

  179. Messenger C. and Read J., Phys. Rev. Lett., 108 (2012) 091101, arXiv 1107.5725v1.

    Article  ADS  Google Scholar 

  180. Sereno M. et al., Mon. Not. R. Astron. Soc., 415 (2011) 2773.

    Article  ADS  Google Scholar 

  181. Fryer C. L. and New K. C. B, Living Rev. Relativ., 14 (2011) 1 http://www.livingreviews.org/lrr-2011-1.

    Article  ADS  Google Scholar 

  182. Reisswig C. et al., Phys. Rev. D, 83 (2011) 064008.

    Article  ADS  Google Scholar 

  183. Fryer C. L. and Kalogera V., Astrophys. J., 554 (2011) 548.

    Article  ADS  Google Scholar 

  184. Muller E. et al., arXiv 1106.6301v1 (2011).

  185. Dimmelmeier H. et al., Phys. Rev. D, 78 (2008) 064056.

    Article  ADS  Google Scholar 

  186. Ott C. D., Class. Quantum Grav., 26 (2009) 204015.

    Article  ADS  Google Scholar 

  187. Pagliaroli G. et al., Phys. Rev. Lett., 103 (2009) 031102.

    Article  ADS  Google Scholar 

  188. Ott C. D., Phys. Rev. Lett., 96 (2006) 201102

    Article  ADS  Google Scholar 

  189. Duncan R.C and Thompson C., Astrophys. J. Lett., 392 (1992) L9.

    Article  ADS  Google Scholar 

  190. Terasawa T. et al., Nature, 434 (2005) 1110.

    Article  ADS  Google Scholar 

  191. Corsi A. and Owen B., Phys. Rev. D, 83 (2011) 104014.

    Article  ADS  Google Scholar 

  192. Abadie J. et al. (The Ligo Scientific Collaboration and The Virgo Collaboration), Astrophys. J., 734 (2011) L35.

    Article  ADS  Google Scholar 

  193. Zink B. et al., arXiv 1107.1689v3 (2011).

  194. http://www.nature.com/nature/journal/v460/n7258/full/nature08278.htm; The Ligo Scientific Collaboration and The Virgo Collaboration, Nature, 460 (2009) 990.

  195. Hogan C., arXiv 1002.4880v21 (2010).

  196. Mureika J. and Stojkovic D., Phys. Rev. Lett., 106 (2011) 101101.

    Article  ADS  Google Scholar 

  197. Cruise M. and Ingley R. M. J., Class. Quantum Grav., 23 (2006) 6185.

    Article  ADS  Google Scholar 

  198. Akutsu T. et al., Phys. Rev. Lett., 101 (2008) 101101.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerdonio, M., Losurdo, G. Gravitational waves: From discovery to astronomy. Riv. Nuovo Cim. 35, 389–480 (2012). https://doi.org/10.1393/ncr/i2012-10079-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2012-10079-4

Navigation