Skip to main content
Log in

The mass of the particles

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

I shall discuss the concept of mass at an elementary, but not trivial, level. From an operational point of view, mass, as any observable, is defined by the set of operations employed to measure it or, when not observable as in the case of quarks, to calculate it. Consequently, there are several “masses”, which are not necessarily equal. I shall discuss the relationships amongst them. I start by recalling the basic concept of mass and the strictly related ones of energy and momentum. I shall give then a historical perspective and draw the attention on a number of wrong concepts that still survive. I shall then review the masses of the neutrally charged flavoured mesons, of the neutrinos, of the hadrons, the quark masses and their running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okun L. B., Phys. Today, June 1989, p. 31.

    Google Scholar 

  2. Okun L. B., “The Einstein formula E0 = mc2. Isn't the Lord laughing?”; Phys. Usp., 178 (2008) 541 (English version 51 (2008) 5).

    Article  Google Scholar 

  3. Poincaré H., C. R. Acad. Sci. Paris, 140 (1905) 1504.

    Google Scholar 

  4. Poincaré H., Rend. Circ. Mat. Palermo, 21 (1906) 129. For a “modernised” translation into English see SCHWARTZ H. M., Am.J.Phys., 39 (1971) 1287; 40 (1972) 862 and 1282.

    Article  Google Scholar 

  5. Poincaré H., L'Etat actuel et l'avenir de la Physique Mathématique, lecture delivered at St. Louis, 24/9/1904; Bull. Sci. Math., 28 (1904) 302 (English translation in The Monist, 15 (1905) 1).

    MATH  Google Scholar 

  6. Einstein A., Ann. Phys. (Leipzig), 17 (1905) 891.

    Article  ADS  Google Scholar 

  7. Einstein A., Ann. Phys. (Leipzig), 18 (1905) 639.

    Article  ADS  Google Scholar 

  8. Planck M., Verh. Deutsch. Phys. Ges., 8 (1906) 136; Phys. Zs., 9 (1908) 828; Verh. Dsch. Phys. Ges., 10 (1908) 728.

    Google Scholar 

  9. Landau L. D. and Lifschitz E. M., Teoryia polya (Gotstekhizdat, Moscow-Leningrad) 1941.

    Google Scholar 

  10. Landau L. D. and Lifschitz E. M., The Classical Theory of Fields (Addison-Wesley Press, Cambridge MA) 1951.

    Google Scholar 

  11. Feynman R., Leighton R. and Sands M., The Feynman Lectures on Physics (Addison Weseley, Reading MA) 1963-1965.

    MATH  Google Scholar 

  12. Landau L. D. and Rumer Y.U.B., What is Relativity? (Dover, Basic books) 1959.

    MATH  Google Scholar 

  13. Poincaré E., Arch. Neerl., 5 (1900) 252.

    Google Scholar 

  14. Abraham M., Phys. Z., 5 (1904) 576; Theorie der Electrzitat,Vol. 2 (Tuber, Leipzig) 1905.

    Google Scholar 

  15. Lorentz H. A., The Theory of Electrons (Dover) 1952.

    Google Scholar 

  16. Rohrlich F., Am. J. Phys., 28 (1960) 639; 38 (1970) 1310; Classical Charged Particles (Addison-Wesley, Reading MA) 1965; Classical Charged Particles (World Scientific) 2007.

    Article  ADS  Google Scholar 

  17. Thomson J. J., Philos. Mag., 11 (1881) 229.

    Article  Google Scholar 

  18. Fermi E., Z. Phys., 24 (1922) 340; Atti Accad. Naz. Lincei, 31 (1922) 184, 306.

    Google Scholar 

  19. Kwal B., J. Phys. Radium, 10 (1949) 103.

    Article  MathSciNet  Google Scholar 

  20. Minkowski H., Nachr. Ges. Wiss. Göttn Mth.-Phys. Kl, 53 (1908).

  21. Abraham M., Rend. Circ. Mat. Palermo, 28 (1909) 1.

    Article  MathSciNet  Google Scholar 

  22. Pfeifer R. N. C. et al., Rev. Mod. Phys., 79 (2007) 1197; 81 (2009) 443(E).

    Article  ADS  Google Scholar 

  23. Jones R. V. and Richards J. C. S., Proc. R. Soc. London, Ser. A, 221 (1954) 480.

    Article  ADS  Google Scholar 

  24. De Groot S. R. and Suttorp L. G., Foundations of Electrodynamics (North Holland, Amsterdam) 1972; MlKURA Z., Phys. Rev. A, 13 (1976) 2265; ISRAEL W., Phys. Lett. B, 67 (1977) 125.

    Google Scholar 

  25. Garrison J. C. and Cfflao R. Y., Phys. Rev. A, 70 (2004) 053826.

    Article  ADS  Google Scholar 

  26. Jones R. V. and Leslie B., Proc. R. Soc. London, Ser. B, 360 (1978) 347.

    ADS  Google Scholar 

  27. Peccei R. D. and Quinn H. R., Phys. Rev. Lett., 38 (1977) 1440; Phys. Rev. D, 16 (1977) 17.

    Article  ADS  Google Scholar 

  28. Primakoff H., Phys. Rev., 81 (1951) 899.

    Article  ADS  Google Scholar 

  29. Raffelt G. and Stodolsky L., Phys. Rev. D, 37 (1988) 1237.

    Article  ADS  Google Scholar 

  30. Zioutis K. et al., hep-ex/0411033.

  31. van Bibber K. et al., Phys. Rev. D, 39 (1989) 2089.

    Article  ADS  Google Scholar 

  32. Wolfenstein L., Phys. Rev. D, 17 (1978) 2369; 20 (1979) 2634; Mikheyev S. P. and Smirnov A. Yu., Yad. Fiz., 42 (1985) 1441; Nuovo Cimento C, 9 (1986) 17.

    Article  ADS  Google Scholar 

  33. Yao W.-M., J. Phys. G, 33 (2006) 1.

    Article  ADS  Google Scholar 

  34. Mohapatra R. and Pal P., Physics of Massive Neutrinos (Word Scientific) 2004.

    Book  Google Scholar 

  35. Fukugita M. and Yanagida T., Physics of Neutrinos and its Applications to Astrophysics (Springer-Verlag, Berlin Heidelberg) 2003.

    Google Scholar 

  36. Giunti C. and Kim C. W., Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press) 2007.

    Book  Google Scholar 

  37. Strumia A. and Vissani F., Neutrino masses and mixing and... arXiv:hep-ph/0606054.

  38. Pontecorvo B., Zh. Eksp. Teor. Fiz., 33 (1957) 549 (Sov. Phys. JETP, 6 (1957) 429).

    Google Scholar 

  39. Pontecorvo B., Zh. Eksp. Teor. Fiz., 53 (1967) 1717 (Sov. Phys. JETP, 6 (1968) 984).

    Google Scholar 

  40. Katayama Y. et al., Prog. Theor. Phys., 28 (1962) 675.

    Article  ADS  Google Scholar 

  41. Maki Z. et al., Prog. Theor. Phys., 28 (1962) 870.

    Article  ADS  Google Scholar 

  42. Wolfenstein L., Phys. Rev. D, 17 (1978) 2369; 20 (1979) 2634.

    Article  ADS  Google Scholar 

  43. Mikheyev S. P. and Smirnov A.Y.U., Yad. Fiz., 42 (1985) 1441 (Sov. J. Nucl. Phys., 42 (1985) 913).

    ADS  Google Scholar 

  44. Fukuda et al., Phys. Rev. Lett., 81 (1998) 1562.

    Article  ADS  Google Scholar 

  45. Bachall J., Phys. Rev. Lett., 12 (1964) 300.

    Article  ADS  Google Scholar 

  46. Davis JR. R., Phys. Rev. Lett., 12 (1964) 303.

    Article  ADS  Google Scholar 

  47. Superk, Phys. Rev. Lett., 63 (1989) 16; 65 (1990) 1301.

    Article  Google Scholar 

  48. Anselmann P. et al., Phys. Lett. B, 285 (1992) 376.

    Article  ADS  Google Scholar 

  49. Anselmann P. et al., Phys. Lett. B, 357 (1995) 237.

    Article  ADS  Google Scholar 

  50. Abdurashitov J.N., et al., Phys. Rev. Lett., 83 (1999) 4686.

    Article  ADS  Google Scholar 

  51. Arpesella C. et al., Phys. Lett. B, 389 (1996) 452.

    Article  ADS  Google Scholar 

  52. Junker M., Phys. Rev. C, 57 (1998) 2700.

    Article  ADS  Google Scholar 

  53. Anselmann P. et al., Phys. Rev. Lett. B, 342 (1995) 440.

    Article  ADS  Google Scholar 

  54. Hampel W. et al., Phys. Rev. Lett. B, 436 (1998) 158.

    Article  ADS  Google Scholar 

  55. Ahmad Q.R., et al., Phys. Rev. Lett., 89 (2002) 0111301.

    Google Scholar 

  56. Arpesella C. et al., Phys. Lett. B, 658 (2008) 101.

    Article  ADS  Google Scholar 

  57. Apollonio M. et al., Phys. Lett. B, 466 (1999) 415.

    Article  ADS  Google Scholar 

  58. Eguchi K. et al., Phys. Rev. Lett., 90 (2003) 021802; Araki T. et al., Phys. Rev. Lett., 94 (2005) 081801.

    Article  ADS  Google Scholar 

  59. Ahn M. H. et al., Phys. Rev. Lett., 90 (2003) 041801; 94 (2005) 081802.

    Article  ADS  Google Scholar 

  60. Michael D. G. et al., Phys. Rev. Lett., 97 (2006) 191801.

    Article  ADS  Google Scholar 

  61. Fogli G. L. et al., hep-ph 0806.2649v1.

  62. Kraus C. et al., Eur. Phys. J. C, 40 (2005) 447.

    Article  ADS  Google Scholar 

  63. Lobashev V. M. et al., Nucl. Phys. B Proc. Suppl., 91 (2001) 280.

    Article  ADS  Google Scholar 

  64. Komatsu E. et al., arXiv:0803.0547v2 [astro-ph].

  65. Kurie F. N. D. et al., Phys. Rev., 49 (1936) 368.

    Article  ADS  Google Scholar 

  66. OPERA proposal. CERN/SPSC 2000-028; SPSC/P318; LNGS P25/2000. July 10, 2000.

  67. Plano R., Proceedings of the Lund International Conference on Elementary Particles (Berlingska Bokttryckeriet, Lund) 1969, p. 323.

  68. Pisut J. and Roos M., Nucl. Phys. B, 6 (1968) 325.

    Article  ADS  Google Scholar 

  69. Narrison S., QCD as a Theory of Hadrons (Cambridge University Press) 2004.

    Book  Google Scholar 

  70. Steuckelberg E. C. G. and Peterman A., Helv. Phys. Acta, 26 (1953) 499.

    MathSciNet  Google Scholar 

  71. Gell-Mann M. and Low F. E., Phys. Rev., 95 (1954) 1300.

    Article  ADS  MathSciNet  Google Scholar 

  72. Thooft G., Nucl. Phys. B, 61 (1973) 455.

    Article  ADS  Google Scholar 

  73. Bardeen W. A. et al., Phys. Rev. D, 18 (1978) 3998.

    Article  ADS  Google Scholar 

  74. Tevatron Electroweak Working Group (2007) hep-ph/0703034.

  75. Fleming S., Mantry S. and Stewart I. W., Phys. Rev. D, 77 (2008) 074010; Hoang A. H. and Stewart I. W., Phy. Lett. B, 660 (2008) 483; FLEMING S., Mantry S. and Stewart I. W., arXiv:0711.2079; Phys. Rev. D, 77 (2008) 114003; Jain A., Scimemi I. and Stewart I. W., arXiv:0803.4214.

    Article  ADS  Google Scholar 

  76. Abreu et al., Phys. Lett. B, 418 (1998) 430.

    Article  ADS  Google Scholar 

  77. Abbiendi G. et al., Eur. Phys. J. C, 21 (2001) 411.

    Article  ADS  Google Scholar 

  78. Leinweber D., http://www.physics.adelaide.edu.au/theory/staff/leinweber/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bettini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettini, A. The mass of the particles. Riv. Nuovo Cim. 32, 295–337 (2009). https://doi.org/10.1393/ncr/i2009-10046-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2009-10046-2

Keywords

Navigation