Skip to main content
Log in

Duality rotations in nonlinear electrodynamics and in extended supergravity

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

We review the general theory of duality rotations which, in four dimensions, exchange electric with magnetic fields. Necessary and sufficient conditions in order for a theory to have duality symmetry are established. A nontrivial example is Born-Infeld theory with n Abelian gauge fields and with Sp(2n, ℝ) self-duality. We then review duality symmetry in supergravity theories. In the case of N = 2 supergravity duality rotations are in general not a symmetry of the theory but a key ingredient in order to formulate the theory itself. This is due to the beautiful relation between the geometry of special Kahler manifolds and duality rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born M. and Infeld L., Foundations of the New Field Theory, Proc. R. Soc. London, Ser. A, 144 (1934) 425.

    Article  ADS  Google Scholar 

  2. Schrödinger E., Contributions to Born’s New Theory of the Electromagnetic Field, Proc. R. Soc. London, Ser. A, 150 (1935) 465.

    Article  ADS  Google Scholar 

  3. Ferrara S., Scherk J. and Zumino B., Algebraic Properties of Extended Supergravity Theories, Nucl. Phys. B, 121 (1977) 393.

    Article  ADS  Google Scholar 

  4. Cremmer E., Scherk J. and Ferrara S., SU(4) Invariant Supergravity Theory, Phys. Lett. B, 74 (1978) 61.

    Article  ADS  Google Scholar 

  5. Cremmer E. and Julia B., The SO (8) Supergravity, Nucl. Phys. B, 159 (1979) 141; Cremmer E. and Julia B., The N = 8 Supergravity Theory. 1. The Lagrangian, Phys. Lett. B, 80 (1978) 48.

    Article  ADS  MathSciNet  Google Scholar 

  6. Gaillard M. K. and Zumino B., Duality Rotations for Interacting Fields, Nucl. Phys. B, 193 (1981) 221.

    Article  ADS  MathSciNet  Google Scholar 

  7. Zumino B., Quantum Structure of Space and Time, edited by Duff M. J. and Isham C. J. (Cambridge University Press) 1982, p. 363.

  8. Castellani L., D’Auria R. and Fré P., Supergravity and Superstrings: a Geometric Perspective (World Scientific) 1991.

    Book  Google Scholar 

  9. Ceresole A., D’Auria R., Ferrara S. and van Proeyen A., Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B, 444 (1995) 92 [arXiv:hep-th/9502072].

    Article  ADS  MathSciNet  Google Scholar 

  10. Andrianopoli L., D’Auria R., Ferrara S., Fre P. and Trigiante M., R-R Scalars, U-Duality and Solvable Lie Algebras, Nucl. Phys. B, 496 (1997) 617 [arXiv:hep- th/9611014].

    Article  ADS  MathSciNet  Google Scholar 

  11. Andrianopoli L., D’Auria R. and Ferrara S., U-duality and central charges in various dimensions revisited, Int. J. Mod. Phys. A, 13 (1998) 431 [arXiv:hep-th/9612105].

    Article  ADS  MathSciNet  Google Scholar 

  12. Gibbons G. W. and Rasheed D. A., Electric-Magnetic Duality Rotations in Non-Linear Electrodynamics, Nucl. Phys. B, 454 (1995) 185; [arXiv:hep-th/9506035].

    Article  ADS  MathSciNet  Google Scholar 

  13. Gibbons G. W. and Rasheed D. A., SL(2,R) Invariance of Nonlinear Electrodynamics Coupled to an Axion and Dilaton, Phys. Lett. B, 365 (1996) 46; [arXiv:hep-th/9509141].

    Article  ADS  MathSciNet  Google Scholar 

  14. Gaillard M. K. and Zumino B., Self-Duality in Nonlinear Electromagnetism, in Supersymmetry and Quantum Field Theory, Kharkov 1997, edited by Wess J. and Akulov V. P. (Springer-Verlag) 1998; [arXiv:hep-th/9705226].

    Google Scholar 

  15. Gaillard M. K. and Zumino B., Nonlinear Electromagnetic Self-Duality and Legendre Transformations, in Duality and Supersymmetric Theories, edited by Olive D. I. and West P. C. (Cambridge University Press) 1999; [arXiv:hep-th/9712103].

    Google Scholar 

  16. Araki M. and Tanii Y., Duality Symmetries in Nonlinear Gauge Theories, Int. J. Mod. Phys. A, 14 (1999) 1139; [arXiv:hep-th/9808029].

    Article  ADS  MathSciNet  Google Scholar 

  17. Brace D., Morariu B. and Zumino B., Duality Invariant Born-Infeld Theory, Yuri Golfand memorial volume; [arXiv:hep-th/9905218].

  18. Aschieri P., Brace D., Morariu B. and Zumino B., Nonlinear self-duality in even dimensions, Nucl. Phys. B, 574 (2000) 551 [arXiv:hep-th/9909021].

    Article  ADS  MathSciNet  Google Scholar 

  19. Aschieri P., Brace D., Morariu B. and Zumino B., Proof of a symmetrized trace conjecture for the Abelian Born-Infeld Lagrangian, Nucl. Phys. B, 588 (2000) 521 [arXiv:hep-th/0003228].

    Article  ADS  MathSciNet  Google Scholar 

  20. Ivanov E. A. and Zupnik B. M., New representation for Lagrangians of self-dual nonlinear electrodynamics, talk given at the International Workshop on Supersymemtry and Quantum Symmetry (SQS’ 01): 16th Max Born Symposium, Karpacz, Poland, 2125 Sep 2001, in Karpacz 2001, Supersymmetries and quantum symmetries, 235-250, [arXiv:hep-th/0202203]; Ivanov E. A. and Zupnik B. M., New approach to nonlinear electrodynamics: Dualities as symmetries of interaction, Phys. At. Nucl., 67 (2004) 2188 (Yad. Fiz., 67 (2004) 2212) [arXiv:hep-th/0303192].

  21. Antoniadis I., Partouche H. and Taylor T. R., Spontaneous Breaking of N = 2 Global Supersymmetry, Phys. Lett. B, 372 (1996) 83; [arXiv:hep-th/9512006].

    Article  ADS  MathSciNet  Google Scholar 

  22. Rocek M. and Tseytlin A. A., Partial breaking of global D = 4 supersymmetry, constrained superfields, and 3-brane actions, Phys. Rev. D, 59 (1999) 106001; [arXiv:hep- th/9811232].

    Article  ADS  MathSciNet  Google Scholar 

  23. Kuzenko S. M. and Theisen S., Supersymmetric duality rotations, JHEP, 0003 (2000) 034 [arXiv:hep-th/0001068].

    Article  ADS  MathSciNet  Google Scholar 

  24. Kuzenko S. M. and Theisen S., Nonlinear self-duality and supersymmetry, Fortsch. Phys, 49 (2001) 273 [arXiv:hep-th/0007231].

    Google Scholar 

  25. Kuzenko S. M. and McCarthy S. A., Nonlinear self-duality and supergravity, JHEP, 0302 (2003) 038 [arXiv:hep-th/0212039]. Kuzenko S. M. and McCarthy S. A., On the component structure of N = 1 supersymmetric nonlinear electrodynamics, JHEP, 0505 (2005) 012 [arXiv:hep-th/0501172].

    Article  ADS  MathSciNet  Google Scholar 

  26. Tanii Y., N = 8 Supergravity in Six-Dimensions, Phys. Lett. B, 145 (1984) 197.

    Article  ADS  MathSciNet  Google Scholar 

  27. Cecotti S., Ferrara S. and Girardello L., Hidden Noncompact Symmetries in String Theory, Nucl. Phys. B, 308 (1988) 436.

    Article  ADS  MathSciNet  Google Scholar 

  28. Julia B. L., Dualities in the classical supergravity limits, in Strings Branes and Dualities, Cargese (1997) p. 121; [arXiv:hep-th/9805083].

    Google Scholar 

  29. Hull C. M. and Townsend P. K., Unity of superstring dualities, Nucl. Phys. B, 438 (1995) 109 [arXiv:hep-th/9410167].

    Article  ADS  MathSciNet  Google Scholar 

  30. Fre P., Lectures on Special Kahler Geometry and Electric-Magnetic Duality Rotations, Nucl. Phys. Proc. Suppl., 45BC (1996) 59 [arXiv:hep-th/9512043].

    Article  ADS  Google Scholar 

  31. Cremmer E., Julia B. L., Lu H. and Pope C. N., Dualisation of Dualities, I & II, Nucl. Phys. B, 523 (1998) 73; 535 (1998) 242; [arXiv:hep-th/9710119], [arXiv:hep-th/9806106].

    Article  ADS  Google Scholar 

  32. Schwinger J., A Magnetic Model of Matter, Science, 165 (1969) 757.

    Article  ADS  Google Scholar 

  33. de Wit B. and Nicolai H., N=8 Supergravity, Nucl. Phys. B, 208 (1982) 323.

    Article  ADS  Google Scholar 

  34. Andrianopoli L., D’Auria R., Ferrara S. and Lledo M. A., Gauging of flat groups in four dimensional supergravity, JHEP, 0207 (2002) 010 [arXiv:hep-th/0203206].

    Article  ADS  MathSciNet  Google Scholar 

  35. Scherk J. and Schwarz J. H., How To Get Masses From Extra Dimensions, Nucl. Phys. B, 153 (1979) 61.

    Article  ADS  MathSciNet  Google Scholar 

  36. Cremmer E., Scherk J. and Schwarz J. H., Spontaneously Broken N=8 Supergravity, Phys. Lett. B, 84 (1979) 83.

    Article  ADS  Google Scholar 

  37. Ferrara S., Kallosh R. and Strominger A., N=2 extremal black holes, Phys. Rev. D, 52 (1995) 5412 [arXiv:hep-th/9508072].

    Article  ADS  MathSciNet  Google Scholar 

  38. Ferrara S. and Kallosh R., Supersymmetry and Attractors, Phys. Rev. D, 54 (1996) 1514 [arXiv:hep-th/9602136]; Ferrara S. and Kallosh R., Universality of Supersymmetric Attractors, Phys. Rev. D, 54 (1996) 1525 [arXiv:hep-th/9603090].

    Article  ADS  MathSciNet  Google Scholar 

  39. Strominger A., Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B, 383 (1996) 39 [arXiv:hep-th/9602111].

    Article  ADS  MathSciNet  Google Scholar 

  40. Bellucci S., Ferrara S., Kallosh R. and Marrani A., Extremal Black Hole and Flux Vacua Attractors, [arXiv:hep-th/0711.4547].

  41. Andrianopoli L., D’Auria R., Ferrara S. and Trigiante M., Extremal black holes in supergravity, Lect. Notes Phys, 737 (2008) 661 [arXiv:hep-th/0611345].

    Article  ADS  MathSciNet  Google Scholar 

  42. Ferrara S., Hayakawa K. and Marrani A., Erice Lectures on Black Holes and Attractors, [arXiv:hep-th/0805.2498].

  43. Ferrara S., Gibbons G. W. and Kallosh R., Black holes and critical points in moduli space, Nucl. Phys. B, 500 (1997) 75 [arXiv:hep-th/9702103].

    Article  ADS  MathSciNet  Google Scholar 

  44. Kallosh R. and Kol B., E(7) Symmetric Area of the Black Hole Horizon, Phys. Rev. D, 53 (1996) 5344 [arXiv:hep-th/9602014].

    Article  ADS  MathSciNet  Google Scholar 

  45. Ferrara S. and Maldacena J. M., Branes, central charges and U-duality invariant BPS conditions, Class. Quantum Gravity, 15 (1998) 749 [arXiv:hep-th/9706097]; Ferrara S. and Gunaydin M., Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A, 13 (1998) 2075 [arXiv:hep-th/9708025].

    Article  ADS  MathSciNet  Google Scholar 

  46. Deser S. and Puzalowski R., Supersymmetric Nonpolynomial Vector Multiplets and Causal Propagation, J. Phys. A, 13 (1980) 2501.

    Article  ADS  MathSciNet  Google Scholar 

  47. Cecotti S. and Ferrara S., Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B, 187 (1987) 335.

    Article  ADS  MathSciNet  Google Scholar 

  48. Bagger J. and Galperin A., A New Goldstone Multiplet for a Partially Broken Supersymmetry, Phys. Rev. D, 55 (1997) 1091; [arXiv:hep-th/9608177].

    Article  ADS  MathSciNet  Google Scholar 

  49. Freed D. S., Special Kaehler manifolds, Commun. Math. Phys., 203 (1999) 31 [arXiv:hep- th/9712042].

    Article  ADS  Google Scholar 

  50. Lledo M. A., Macia O., Van Proeyen A. and Varadarajan V. S., Special geometry for arbitrary signatures Contribution to the handbook on pseudo-Riemannian geometry and super-symmetry, edited by Cortés V., Eur. Math. Society series IRMA Lectures in Mathematics and Theoretical Physics. [arXiv:hep-th/0612210].

  51. Cortes V., Special Kaehler manifolds: a survey, in Proceedings of the 21st Winter School on “Geometry and Physics” (Srni 2001), edited by Slovak J. and Cadek M., Rend. Circ. Mat. Palermo (2), Suppl. no. 66 (2001) 11, arXiv:math/0112114.

    Google Scholar 

  52. Aschieri P., Duality rotations and BPS monopoles with space and time noncommutativity, Nucl. Phys. B, 617 (2001) 321 [arXiv:hep-th/0106281].

    Article  ADS  MathSciNet  Google Scholar 

  53. Aschieri P., Monopoles in space-time noncommutative Born-Infeld theory, Fortsch. Phys., 50 (2002) 680 [arXiv:hep-th/0112186].

    Article  ADS  MathSciNet  Google Scholar 

  54. Aschieri P., Castellani L. and Isaev A. P., Discretized Yang-Mills and Born-Infeld actions on finite group geometries, Int. J. Mod. Phys. A, 18 (2003) 3555 [arXiv:hep- th/0201223].

    Article  ADS  MathSciNet  Google Scholar 

  55. Blalynicki-Blrula I. and Blalynicka-Blrula Z., Quantum Electrodynamics (Pergamon, Oxford) 1975 (also available at http://www.cft.edu.pl/~birula/publ.php).

    Google Scholar 

  56. Deser S. and Teitelboim C., Duality Transformations of Abelian and Nonabelian Gauge Fields, Phys. Rev. D, 13 (1976) 1592.

    Article  ADS  MathSciNet  Google Scholar 

  57. Bialynicki-Birula I., Nonlinear Electrodynamics: Variations on a Theme by Born and Infeld, In Quantum Theory of Particles and Fields, edited by Jancewicz B. and Lukierski J., pp. 31–48 (also available at http://www.cft.edu.pl/~birula/publ.php).

  58. Deser S. and Sarioglu O., Hamiltonian electric/magnetic duality and Lorentz invariance, Phys. Lett. B, 423 (1998) 369 [arXiv:hep-th/9712067].

    Article  ADS  MathSciNet  Google Scholar 

  59. Coleman S. R., Wess J. and Zumino B., Structure of phenomenological Lagrangians. 1, Phys. Rev., 177 (1969) 2239.

    Article  ADS  Google Scholar 

  60. Callan C. G., Coleman S. R., Wess J. and Zumino B., Structure of phenomenological Lagrangians. 2, Phys. Rev., 177 (1969) 2247.

    Article  ADS  Google Scholar 

  61. Argyres P. C. and Nappi C. R., Spin 1 Effective Actions from Open Strings, Nucl. Phys. B, 330 (1990) 151.

    Article  ADS  MathSciNet  Google Scholar 

  62. Tseytlin A. A., On Non-Abelian Generalisation of Born-Infeld Action in String Theory, Nucl. Phys. B, 501 (1997) 41; [arXiv:hep-th/9701125].

    Article  ADS  MathSciNet  Google Scholar 

  63. Andrianopoli L., D’Auria R. and Ferrara S., U-invariants, black-hole entropy and fixed scalars, Phys. Lett. B, 403 (1997) 12 [arXiv:hep-th/9703156].

    Article  ADS  MathSciNet  Google Scholar 

  64. Castellani L., Ceresole A., Ferrara S., D’Auria R., Fre P. and Maina E., The Complete N = 3 Matter Coupled Supergravity, Nucl. Phys. B, 268 (1986) 317.

    Article  ADS  MathSciNet  Google Scholar 

  65. Cremmer E., in Supergravity’ 81, edited by Ferrara S. and Taylor J. G., p. 313; JULIA B., in Superspace & Supergravity, edited by Hawking S. and Rocek M. (Cambridge University Press) 1981, p. 331.

  66. Kallosh R. and Soroush M., Explicit Action of E7(7) on N = 8 Supergravity Fields, Nucl. Phys. B, 801 (2008) 25 [arXiv:hep-th/0802.4106].

    Article  ADS  Google Scholar 

  67. Trigiante M., Dual Gauged Supergravities, [arXiv:hep-th/0701218].

  68. Craps B., Roose F., Troost W. and Van Proeyen A., What is special Kaehler geometry?, Nucl. Phys. B, 503 (1997) 565 [arXiv:hep-th/9703082].

    Article  ADS  Google Scholar 

  69. Aschieri P. and Svrtan D., Convergence of perturbative solutions of matrix equations, in preparation.

  70. Schwarz A. S., Noncommutative Algebraic Equations and Noncommutative Eigenvalue Problem, Lett. Math. Phys., 52 (2000) 177 [arXiv:hep-th/0004088].

    Article  MathSciNet  Google Scholar 

  71. Cerchiai B. L. and Zumino B., Properties of perturbative solutions of unilateral matrix equations, Lett. Math. Phys., 54 (2000) 33 [arXiv:hep-th/0009013]; Cerchiai B. L. and Zumino B., Some remarks on unilateral matrix equations, Mod. Phys. Lett. A, 16 (2001) 191 [arXiv:hep-th/0105065].

    Article  MathSciNet  Google Scholar 

  72. Zumino B., Supersymmetry and Kahler Manifolds, Phys. Lett. B, 87 (1979) 203.

    Article  ADS  Google Scholar 

  73. Binetruy P. and Gaillard M. K., S-Duality Constraints on Effective Potentials for Gaugino Condensation, Phys. Lett. B, 365 (1996) 87; [arXiv:hep-th/9506207].

    Article  ADS  Google Scholar 

  74. Andrianopoli L., D’Auria R., Ferrara S. and Trigiante M., Black-hole attractors in N =1 supergravity, JHEP, 0707 (2007) 019 [arXiv:hep-th/0703178].

    Article  ADS  MathSciNet  Google Scholar 

  75. Ferrara S. and Strominger A., N = 2 space-time supersymmetry and Calabi Yau Moduli Space, in Proceedings of College Station Workshop “Strings ‘89”, edited by Arnowitt et al. (World scientific) 1989, p. 245; Candelas P. and DE LA Ossa X., Moduli Space of Calabi Yau Manifolds, Nucl. Phys. B, 355 (1991) 455; DE Wit B. and Van Proeyen A., Potentials and Symmetries of General Gauged N = 2 Supergravity - Yang-Mills Models, Nucl. Phys. B, 245 (1984) 89; Cremmer E., Kounnas C., Van Proeyen A., Derendinger J. P., Ferrara S., de Wit B. and Girardello L., Vector Multiplets Coupled to N = 2 Supergravity: Superhiggs Effect, Flat Potentials and Geometric Structure, Nucl. Phys. B, 250 (1985) 385; DE Wit B., Lauwers P. G. and Van Proeyen A., Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B, 255 (1985) 569; Ferrara S., Kounnas C., Lust D. and Zwirner F., Duality invariant partition functions and automorphic superpotentials for (2, 2) string compactifications, Nucl. Phys. B, 365 (1991) 431; Castellani L., D’Auria R. and Ferrara S., Special geometry without special coordinates, Class. Quantum Gravity, 7 (1990) 1767; Castellani L., D’Auria R. and Ferrara S., Special Kahler Geometry; an intrinsic Formulation from N = 2 Space-Time Supersymmetry, Phys. Lett. B, 241 (1990) 57.

  76. Strominger A., Special Geometry, Commun. Math. Phys., 133 (1990) 163.

    Article  ADS  MathSciNet  Google Scholar 

  77. Andrianopoli L., Bertolini M., Ceresole A., D’Auria R., Ferrara S., Fre P. and Magri T., N 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys., 23 (1997) 111 [arXiv:hep-th/9605032]; Andrianopoli L., Bertolini M., Ceresole A., D’Auria R., Ferrara S. and Fre P., General Matter Coupled N = 2 Supergravity, Nucl. Phys. B, 476 (1996) 397 [arXiv:hep-th/9603004].

    Article  ADS  MathSciNet  Google Scholar 

  78. Cremmer E. and Van Proeyen A., Classification of Kahler Manifolds in N = 2 Vector Multiplet Supergravity Couplings, Class. Quantum Gravity, 2 (1985) 445.

    Article  ADS  MathSciNet  Google Scholar 

  79. Seiberg N. and Witten E., String theory and noncommutative geometry, JHEP, 9909 (1999) 032 [arXiv:hep-th/9908142].

    Article  ADS  MathSciNet  Google Scholar 

  80. Madore J., Schraml S., Schupp P. and Wess J., Gauge theory on noncommutative spaces, Eur. Phys. J. C, 16 (2000) 161 [arXiv:hep-th/0001203].

    Article  ADS  MathSciNet  Google Scholar 

  81. Jurco B., Schupp P. and Wess J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nucl. Phys. B, 604 (2001) 148 [arXiv:hep-th/0102129].

    Article  ADS  MathSciNet  Google Scholar 

  82. Seiberg N., Susskind L. and Toumbas N., Space/time non-commutativity and causality, JHEP, 0006 (2000) 044 [arXiv:hep-th/0005015]; Barbon J. L. and Rabinovici E., Stringy fuzziness as the custodian of time-space noncommutativity, Phys. Lett. B, 486 (2000) 202 [arXiv:hep-th/0005073]; Gomis J. and Mehen T., Space-time noncommutative field theories and unitarity, Nucl. Phys. B, 591 (2000) 265 [arXiv:hep-th/0005129].

    Article  ADS  MathSciNet  Google Scholar 

  83. Aharony O., Gomis J. and Mehen T., On theories with light-like noncommutativity, JHEP, 0009 (2000) 023 [arXiv:hep-th/0006236].

    Article  ADS  MathSciNet  Google Scholar 

  84. Bahns D., Doplicher S., Fredenhagen K. and Piacitelli G., On the unitarity problem in space/time noncommutative theories, Phys. Lett. B, 533 (2002) 178 [arXiv:hep- th/0201222].

    Article  ADS  MathSciNet  Google Scholar 

  85. Aschieri P., On duality rotations in light-like noncommutative electromagnetism, Mod. Phys. Lett. A, 16 (2001) 163 [arXiv:hep-th/0103150].

    Article  ADS  MathSciNet  Google Scholar 

  86. Ganor O. J., Rajesh G. and Sethi S., Duality and non-commutative gauge theory, Phys. Rev. D, 62 (2000) 125008 [arXiv:hep-th/0005046].

    Article  ADS  MathSciNet  Google Scholar 

  87. Gopakumar R., Maldagena J., Minwalla S. and Strominger A., S-duality and noncommutative gauge theory, JHEP, 0006 (2000) 036 [arXiv:hep-th/0005048].

    Article  ADS  MathSciNet  Google Scholar 

  88. Rey S. and von Unge R., S-duality, noncritical open string and noncommutative gauge theory, Phys. Lett. B, 499 (2001) 215 [arXiv:hep-th/0007089].

    Article  ADS  MathSciNet  Google Scholar 

  89. Lu J. X., Roy S. and Singh H., SL(2,Z) duality and 4-dimensional noncommutative theories, Nucl. Phys. B, 595 (2001) 298 [arXiv:hep-th/0007168].

    Article  ADS  MathSciNet  Google Scholar 

  90. Alishahiha M., Oz Y. and Russo J. G., Supergravity and light-like non-commutativity, JHEP, 0009 (2000) 002 [arXiv:hep-th/0007215].

    ADS  MathSciNet  Google Scholar 

  91. Sghwarz A., Morita equivalence and duality, Nucl. Phys. B, 534 (1998) 720 [arXiv:hep- th/9805034]; Ho P., Twisted bundle on quantum torus and BPS states in matrix theory, Phys. Lett. B, 434 (1998) 41 [arXiv:hep-th/9803166]; Brage D., Morariu B. and Zumino B., Dualities of the matrix model from T-duality of the type II string, Nucl. Phys. B, 545 (1999) 192 [arXiv:hep-th/9810099].

    Article  ADS  MathSciNet  Google Scholar 

  92. Chu C. and Ho P., Noncommutative open string and D-brane, Nucl. Phys. B, 550 (1999) 151 [arXiv:hep-th/9812219].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Aschieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschieri, P., Ferrara, S. & Zumino, B. Duality rotations in nonlinear electrodynamics and in extended supergravity. Riv. Nuovo Cim. 31, 625–707 (2008). https://doi.org/10.1393/ncr/i2008-10038-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2008-10038-8

Keywords

Navigation