Skip to main content
Log in

Frequency combs applications and optical frequency standards

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

A laser frequency comb allows the conversion of the very rapid oscillations of visible light of some 100’s of THz down to frequencies that can be handled with conventional electronics, say below 100 GHz. This capability has enabled the most precise laser spectroscopy experiments yet that allowed to test quantum electrodynamics, to determine fundamental constants and to search for possible slow changes of these constants. Using an optical frequency reference in combination with a laser frequency comb has made it possible to construct all optical atomic clocks, that are about to outperform the current cesium atomic clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall J. L., IEEE Sel. Top. Quantum Electron., 6 (2000) 1136.

    Article  ADS  Google Scholar 

  2. Udem Th. et al., in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, Besançon France, IEEE catalog no. 99CH36313 (1999), pp. 602–625.

    Google Scholar 

  3. Reichert J. et al., Opt. Commun., 172 (1999) 59.

    Article  ADS  Google Scholar 

  4. Reichert J. et al., Phys. Rev. Lett., 84 (2000) 3232.

    Article  ADS  Google Scholar 

  5. Diddams S. A. et al., Phys. Rev. Lett., 84 (2000) 5102.

    Article  ADS  Google Scholar 

  6. Jones D. J. et al., Science, 288 (2000) 635.

    Article  ADS  Google Scholar 

  7. Holzwarth R. et al., Phys. Rev. Lett., 85 (2000) 2264.

    Article  ADS  Google Scholar 

  8. Udem Th., Holzwarth R. and Hänsch T. W., Nature, 416 (2002) 233.

    Article  ADS  Google Scholar 

  9. Oskay W. H. et al., Phys. Rev. Lett., 97 (2006) 020801.

    Article  ADS  Google Scholar 

  10. Takamoto M. et al., Nature, 435 (2005) 321.

    Article  ADS  Google Scholar 

  11. Gill P. and Margolis H., Physics World, 18 May issue (2005) 35.

    Google Scholar 

  12. High Resolution Spectroscopy of Hydrogen, in The Hydrogen Atom, edited by Bassani G. F., Inguscio M. and Hänsch T. W. (Springer Verlag, Berlin, Heidelberg, New York) 1989, pp. 93–102.

    Google Scholar 

  13. Niering M. et al., Phys. Rev. Lett., 84 (2000) 5496.

    Article  ADS  Google Scholar 

  14. de Beauvoir B. et al., Eur. Phys. Lett. D, 12 (2000) 61.

    Article  ADS  Google Scholar 

  15. Udem Th. et al., Phys. Rev. Lett., 82 (1999) 3568.

    Article  ADS  Google Scholar 

  16. Gerginov V. et al., Phys. Rev. A, 73 (2006) 032504.

    Article  ADS  Google Scholar 

  17. Bize S. et al., Phys. Rev. Lett., 90 (2003) 150802.

    Article  ADS  Google Scholar 

  18. Peik E. et al., Phys. Rev. Lett., 93 (2004) 170801.

    Article  ADS  Google Scholar 

  19. Zimmermann M. et al., Laser Phys., 15 (2005) 997.

    Google Scholar 

  20. Kourogi M. et al., IEEE J. Quantum Electron., 31 (1995) 2120.

    Article  ADS  Google Scholar 

  21. Brothers L. R. and Wong N. C., Opt. Lett., 22 (1997) 1015.

    Article  ADS  Google Scholar 

  22. Imai K. et al., IEEE J. Quantum Electron., 34 (1998) 1998.

    Google Scholar 

  23. Spence D. E., Kean P. N. and Sibbett W., Opt. Lett., 16 (1991) 42.

    Article  ADS  Google Scholar 

  24. Diels J. C. and Rudolph W., Ultrashort Laser Pulse Phenomena (Elsevier, Amsterdam, Heidelberg, Tokyo) 2006.

    Google Scholar 

  25. Eckstein J. N., High Resolution Spectroscopy using Multiple Coherent Pulses (Thesis, Stanford University, USA) 1978.

    Google Scholar 

  26. Bassani G. F., Inguscio M. and Hänsch T. W. (Editors) Frequency Standards in the Optical Spectrum, in The Hydrogen Atom, (Springer Verlag, Berlin, Heidelberg, New York) 1989, pp. 123–133.

    Google Scholar 

  27. Holzwarth R. et al., Appl. Phys. B, 73 (2001) 269.

    Article  ADS  Google Scholar 

  28. Udem Th. et al., Opt. Lett., 24 (1999) 881.

    Article  ADS  Google Scholar 

  29. Diddams S. A. et al., Opt. Lett., 27 (2002) 58.

    Article  ADS  Google Scholar 

  30. Ma L. S. et al., Science, 303 (2004) 1843.

    Article  ADS  Google Scholar 

  31. Stenger J. and Telle H. R., Opt. Lett., 25 (2000) 1553.

    Article  ADS  Google Scholar 

  32. Krausz F. et al., IEEE J. Quantum Electron. 28 (1992) 2097.

    Article  ADS  Google Scholar 

  33. Hasegawa A. and Tappert F., Appl. Phys. Lett., 23 (1973) 142.

  34. Agrawal G. P., Nonlinear Fiber Optics (Academic Press, New York) 2001.

    MATH  Google Scholar 

  35. Sutter D. H. et al., Opt. Lett., 24 (1999) 631.

    Article  ADS  Google Scholar 

  36. Morgner U. et al., Opt. Lett., 24 (1999) 411.

    Article  ADS  Google Scholar 

  37. Siegman A. E., Lasers (University Science Books, Mill Valley Ca USA) 1986.

    Google Scholar 

  38. Bramwell S. R., Kane D. M. and Ferguson A. I., Opt. Commun., 56 (1985) 112.

    Article  ADS  Google Scholar 

  39. Hollberg L. et al., see fig. 9 in IEEE J. Quantum Electron., 37 (2001) 1502.

    Article  ADS  Google Scholar 

  40. Rush D. W., Ho P. T. and Burdge G. L., Opt. Commun., 52 (1984) 41.

    Article  ADS  Google Scholar 

  41. Bartels A. et al., Opt. Lett., 29 (2004) 1081.

    Article  ADS  Google Scholar 

  42. Swann W. C. et al., Opt. Lett., 31 (2006) 3046.

    Article  ADS  Google Scholar 

  43. Knight J. C. et al., Opt. Lett., 21 (1996) 1547.

    Article  ADS  Google Scholar 

  44. Ranka J. K. et al., Opt. Lett., 25 (2000) 25.

    Article  ADS  Google Scholar 

  45. Russell P. St. J., Science, 299 (2003) 358.

    Article  ADS  Google Scholar 

  46. Birks T. A., Wadsworth W. J. and Russell P. St. J., Opt. Lett., 25 (2000) 1415.

    Article  ADS  Google Scholar 

  47. Holzwarth R. et al., Laser Phys., 11 (2001) 1100.

    Google Scholar 

  48. Bartels A., Dekorsy T. and Kurz H., Opt. Lett., 24 (1999) 996.

    Article  ADS  Google Scholar 

  49. Hoi M. et al., Phys. Rev. Lett., 96 (2006) 243401.

    Article  ADS  Google Scholar 

  50. Corwn K. L. et al., Phys. Rev. Lett., 90 (2003) 113904.

    Article  ADS  Google Scholar 

  51. Holman K. W. et al., Opt. Lett., 28 (2003) 851.

    Article  ADS  Google Scholar 

  52. Holzwarth R., PhD thesis Ludwig-Maximilians-Universität Munich (2001).

  53. Dudley J. M. et al., J. Opt. Soc. Am. B, 19 (2002) 765.

    Article  ADS  Google Scholar 

  54. Ell R. et al., Opt. Lett., 26 (2001) 373.

    Article  ADS  Google Scholar 

  55. Fortier T. M. et al., Opt. Lett., 28 (2003) 2198.

    Article  ADS  Google Scholar 

  56. Matos L. et al., Opt. Lett., 29 (2004) 1683.

    Article  ADS  Google Scholar 

  57. Fortier T. M. et al., Opt. Lett., 31 (2006) 1011.

    Article  ADS  Google Scholar 

  58. Morgner U. et al., Phys. Rev. Lett., 86 (2001) 5462.

    Article  ADS  Google Scholar 

  59. Diddams S. A. et al., IEEE J. Quantum Electron. 9 (2003) 1072.

    Article  Google Scholar 

  60. Fuji T. et al., Opt. Lett., 30 (2005) 332.

    Article  ADS  Google Scholar 

  61. Nelson L. E. et al., Appl. Phys. B, 65 (1997) 277.

    Article  ADS  Google Scholar 

  62. Kubina P. et al., Opt. Express, 13 (2005) 909.

    Article  ADS  Google Scholar 

  63. Adler F. et al., Opt. Express, 12 (2004) 5872.

    Article  ADS  Google Scholar 

  64. McFerran J. J. et al., Opt. Lett., 31 (2006) 1997.

    Article  ADS  Google Scholar 

  65. See, for example, Gardener F. M., Phaselock Techniques (John Wiley & Sons, New York) 1979.

    Google Scholar 

  66. Walls F. L. and DeMarchi A., IEEE Trans. Instrum. Meas., 24 (1975) 210.

    Article  Google Scholar 

  67. Telle H. R., in Frequency Control of Semiconductor Lasers, edited by Ohtsu M. (Wiley, New York) 1996, pp. 137–167.

  68. Brabec T., private communication.

  69. Haus H. A. and Ippen E. P., Opt. Lett., 26 (2001) 1654.

    Article  ADS  Google Scholar 

  70. Xu L. et al., Opt. Lett., 21 (1996) 2008.

    Article  ADS  Google Scholar 

  71. Helbing F. W. et al., Appl. Phys. B, 74 (2002) S35.

    Article  ADS  Google Scholar 

  72. Witte S. et al., Appl. Phys. B, 78 (2004) 5.

    Article  ADS  Google Scholar 

  73. Prevedelli M., Freegarde T. and Hänsch T. W., Appl. Phys. B, 60 (1995) S241.

    Google Scholar 

  74. Fischer M. et al., Phys. Rev. Lett., 92 (2004) 230802.

    Article  ADS  Google Scholar 

  75. Santarelli G. et al., Phys. Rev. Lett., 82 (1999) 4619.

    Article  ADS  Google Scholar 

  76. Uzan J. P., Rev. Mod. Phys., 75 (2003) 403.

    Article  ADS  Google Scholar 

  77. Dirac P. A. M., Nature (London), 139 (1937) 323.

    Article  ADS  Google Scholar 

  78. Webb J. K. et al., Phys. Rev. Lett., 87 (2001) 091301.

    Article  ADS  Google Scholar 

  79. Murphy M. T., Webb J. K. and Flambaum V. V., Mon. Not. R. Astron. Soc., 345 (2003) 609.

    Article  ADS  Google Scholar 

  80. Quast R. et al., Astron. Astrophys., 417 (2004) 853.

    Article  Google Scholar 

  81. Srianand R. et al., Phys. Rev. Lett., 92 (2004) 121302.

    Article  ADS  Google Scholar 

  82. Shlyakhter A. I., Nature, 264 (1976) 340.

    Article  ADS  Google Scholar 

  83. Fujii Y. et al., Nucl. Phys. B, 573 (2000) 377.

    Article  ADS  Google Scholar 

  84. Lamoreaux S. K. and Torgerson J. R., Phys. Rev. D, 69 (2004) 121701(R).

    Article  ADS  Google Scholar 

  85. Murphy M. T. et al., arXiv:astro-ph/0612407v1.

  86. Murphy M. T., Webb J. K. and Flambaum V. V., arXiv:astro-ph/0611080 v3.

  87. Calmet X. and Fritzsch H., Phys. Lett. B, 540 (2002) 173.

    Article  ADS  Google Scholar 

  88. Schneider T., Peik E. and Tamm Chr., Phys. Rev. Lett., 94 (2005) 230801.

    Article  ADS  Google Scholar 

  89. Diddams S. A. et al., Science, 293 (2001) 825.

    Article  ADS  Google Scholar 

  90. Mohr P. J. and Taylor B. N., Rev. Mod. Phys., 77 (2005) 1.

    Article  ADS  Google Scholar 

  91. Gabrielse G. et al., Phys. Rev. Lett., 97 (2006) 030802.

    Article  ADS  Google Scholar 

  92. Wicht A. et al., Phys. Scr., T02 (2002) 82.

    Article  ADS  Google Scholar 

  93. Cladé P. et al., Phys. Rev. Lett., 96 (2006) 03301.

    Article  Google Scholar 

  94. Bradley et al., Phys. Rev. Lett., 83 (1999) 4510.

    Article  ADS  Google Scholar 

  95. Pachucki K. and Jentschura U. D., Phys. Rev. Lett., 91 (2003) 113005.

    Article  ADS  Google Scholar 

  96. Murphy M. T. et al., sumitted to Mon. Not. R. Astron. Soc.

  97. Apolonski A. et al., Phys. Rev. Lett., 85 (2000) 740.

    Article  ADS  Google Scholar 

  98. Kienberger R. et al., Nature, 427 (2004) 817.

    Article  ADS  Google Scholar 

  99. Baltuška A. et al., Nature, 421 (2003) 611.

    Article  ADS  Google Scholar 

  100. Wahlström C. G. et al., Phys. Rev. A, 48 (1993) 4709.

    Article  ADS  Google Scholar 

  101. Brabec T. and Krausz F., Rev. Mod. Phys., 72 (2000) 545.

    Article  ADS  Google Scholar 

  102. Eden J. G., Prog. Quantum Electron., 28 (2004) 197.

    Article  ADS  Google Scholar 

  103. Paulus G. G. et al., Phys. Rev. Lett., 85 (2000) 253004.

    Google Scholar 

  104. Seres J. et al., Nature, 433 (2005) 596.

    Article  ADS  Google Scholar 

  105. Goulielmakis E. et al., Science, 305 (2004) 1267.

    Article  ADS  Google Scholar 

  106. Gerginov V. et al., Opt. Lett., 30 (2005) 1734.

    Article  ADS  Google Scholar 

  107. Fendel P. et al., Opt. Lett., 32 (2007) 701.

    Article  ADS  Google Scholar 

  108. Baklanov Ye. F. and Chebotayev V. P., Appl. Phys. Lett., 12 (1977) 97.

    ADS  Google Scholar 

  109. Meshulach D. and Silberberg Y., Nature, 396 (1998) 239.

    Article  ADS  Google Scholar 

  110. Eckstein J., Ferguson A. I. and Hänsch T. W., Phys. Rev. Lett., 40 (1978) 847.

    Article  ADS  Google Scholar 

  111. Snadden M. J. et al., Opt. Commun., 125 (1996) 70.

    Article  ADS  Google Scholar 

  112. Marian A. et al., Science, 306 (2004) 2063.

    Article  ADS  Google Scholar 

  113. Fortier T. M. et al., Phys. Rev. Lett., 97 (2006) 163905.

    Article  ADS  Google Scholar 

  114. Witte S. et al., Science, 307 (2005) 400.

    Article  ADS  Google Scholar 

  115. Cavalieri S. et al., Phys. Rev. Lett., 89 (2002) 133002.

    Article  ADS  Google Scholar 

  116. Zinkstok R. Th. et al., Phys. Rev. A, 73 (2006) 061801(R).

    Article  ADS  Google Scholar 

  117. Gohle Ch. et al., Nature, 436 (2005) 234.

    Article  ADS  Google Scholar 

  118. Jones R. J., Moll K. Thorpe M. and Ye J., Phys. Rev. Lett., 94 (2005) 193201.

    Article  ADS  Google Scholar 

  119. Barnes J. A. et al., IEEE Trans. Instrum. Meas., 20 (1971) 105.

    Article  Google Scholar 

  120. Webster S. A. et al., Phys. Rev. A., 65 (2002) 052501.

    Article  ADS  Google Scholar 

  121. See, for example, contributions of Madej A. A., Bernard J. E., Riehle F. and Helmcke J., in Frequency Measurement and Control, edited by Luiten A. N. (Springer Verlag, Berlin, Heidelberg, New York) 2001.

  122. Evenson K. M. et al., Appl. Phys. Lett., 22 (1973) 192.

    Article  ADS  Google Scholar 

  123. Peik E., Schneider T. and Tamm Chr., J. Phys. B, 39 (2006) 145.

    Article  ADS  Google Scholar 

  124. Brusch A. et al., Phys. Rev. Lett., 96 (2006) 103003.

    Article  ADS  Google Scholar 

  125. Quinn T. J., Metrologia, 40 (2003) 103.

    Article  ADS  Google Scholar 

  126. Editor’s note: Documents concerning the new definition of the metre, Metrologia, 19 (1984) 163.

    Google Scholar 

  127. Quinn T. J., Metrologia, 30 (1993/1994) 523.

    Article  ADS  Google Scholar 

  128. Quinn T. J., Metrologia, 36 (1999) 211.

    Article  ADS  Google Scholar 

  129. Wineland D. J. et al., Phys. Rev. A, 36 (1987) 2220.

    Article  ADS  Google Scholar 

  130. Blatt R., Gill P. and Thompson R. C., J. Mod. Opt., 39 (1992) 193.

    Article  ADS  Google Scholar 

  131. Madej A. A. and Bernard J. E., Frequency Measurement and Control: Topics in Applied Physics, edited by A. N. Luiten, 79 (2001) 153.

    Article  ADS  Google Scholar 

  132. Riehle F., Frequency Standards: Basics and Applications (Wiley-VCH, Weinheim) 2004.

    Google Scholar 

  133. Dehmelt H., Bull. Am. Phys. Soc., 20 (1975) 60.

    Google Scholar 

  134. Wineland D. J. and Dehmelt H., Bull. Am. Phys. Soc., 20 (1975) 637.

    Google Scholar 

  135. Wineland D. J. et al., Opt. Lett., 5 (1980) 245.

    Article  ADS  Google Scholar 

  136. Nagourney W., Sandberg J. and Dehmelt H., Phys. Rev. Lett., 56 (1986) 2797.

    Article  ADS  Google Scholar 

  137. Itano W. M., J. Res. Natl. Inst. Stand. Technol., 105 (2000) 829.

    Article  Google Scholar 

  138. Dubé P. et al., Phys. Rev. Lett., 95 (2005) 033001.

    Article  ADS  Google Scholar 

  139. Tamm Chr. et al., to be published in IEEE Trans. Instrum. Meas.

  140. Margolis H. S. et al., Science, 306 (2004) 1355.

    Article  ADS  Google Scholar 

  141. Ito N. et al., Opt. Commun., 109 (1994) 414.

    Article  ADS  Google Scholar 

  142. Zibrov A. S. et al., Appl. Phys. B, 59 (1994) 327.

    Article  ADS  Google Scholar 

  143. Kersten P. et al., Appl. Phys. B, 68 (1999) 27.

    Article  ADS  Google Scholar 

  144. Beausoleil R. G. and Hänsch T. W., Phys. Rev. A, 33 (1986) 1661.

    Article  ADS  Google Scholar 

  145. Sterr U. et al., Appl. Phys. B, 54 (1992) 341.

    Article  ADS  Google Scholar 

  146. Wilpers G. et al., Phys. Rev. Lett., 89 (2002) 230801.

    Article  ADS  Google Scholar 

  147. Sterr U. et al., C. R. Physique, 5 (2005) 845.

  148. Sterr U. et al., Phys. Rev. A, 72 (2005) 062111.

    Article  ADS  Google Scholar 

  149. Wilpers G., Oaetes C. W. and Hollberg L. W., Appl. Phys. B, 85 (2006) 31.

    Article  ADS  Google Scholar 

  150. Sorrentino F. et al., arXiv:physics/0609133 v1 (2006).

  151. Itano W. M. et al., Phys. Rev. A, 47 (1993) 3554.

    Article  ADS  Google Scholar 

  152. Bordé Ch. J. et al., Phys. Rev. A, 30 (1984) 1836.

    Article  ADS  Google Scholar 

  153. Bordé Ch. J., Phys. Lett. A, 30 (1989) 10.

    Article  ADS  Google Scholar 

  154. Stoehr H. et al., Opt. Lett., 31 (2006) 736.

    Article  ADS  Google Scholar 

  155. Dick G. J., Proceedings of 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Redondo Beach, CA, 1987 (U. S. Naval Observatory) 1987, pp. 133–147.

    Google Scholar 

  156. Quessada A. et al., J. Opt. B: Quantum Semiclassical Opt., 5 (2003) S150.

    Article  Google Scholar 

  157. Katori H., Ido T. and Kuwata-Gonokami M., J. Phys. Soc. Jpn., 68 (1999) 2479.

    Article  ADS  Google Scholar 

  158. Katori H., in Proceedings of the 6th Symposium on Frequency Standards and Metrology, edited by P. Gill (World Scientific, Singapore) 2002, p. 323.

    Book  Google Scholar 

  159. Takamoto M. et al., J. Phys. Soc. Jpn., 75 (2006) 104302.

    Article  ADS  Google Scholar 

  160. Boyd M. M. et al., Phys. Rev. Lett., 98 (2007) 083002.

    Article  ADS  Google Scholar 

  161. Le Targat R. et al., Phys. Rev. Lett., 97 (2006) 130801.

    Article  ADS  Google Scholar 

  162. Barber Z. W. et al., Phys. Rev. Lett., 96 (2006) 083002.

    Article  ADS  Google Scholar 

  163. Wineland D. J. et al., in Proceedings of the 6th Symposium on Frequency Standards and Metrology, edited by P. Gill (World Scientific, Singapore) 2002, p. 361.

    Book  Google Scholar 

  164. Schmidt P. O. et al., Science, 309 (2005) 749.

    Article  ADS  Google Scholar 

  165. Peik E. and Tamm Ch., Europhys. Lett., 61 (2003) 161.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udem, T., Riehle, F. Frequency combs applications and optical frequency standards. Riv. Nuovo Cim. 30, 563–606 (2007). https://doi.org/10.1393/ncr/i2007-10027-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10027-5

Navigation