Skip to main content
Log in

Self-gravitating accretion discs

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

I review recent progress in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse systems, and can be found in external galaxies around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature where a central object is fed from the accretion disc, due to the effect of turbulence and disc instabilities, which are able to remove the angular momentum from the gas and allow its accretion. In recent years, it has become increasingly apparent that the gravitational field produced by the disc itself (the disc’s self-gravity) is an important ingredient in the models, especially in the context of protostellar discs and of AGN discs. Indeed, it appears that in many cases (and especially in the colder outer parts of the disc) the development of gravitational instabilities can be one of the main agents in the redistribution of angular momentum. In some cases, the instability can be strong enough to lead to the formation of gravitationally bound clumps within the disc, and thus to determine the disc fragmentation. As a result, progress in our understanding of the dynamics of self-gravitating discs is essential to identify the processes that lead to the feeding of both young stars and of supermassive black holes in AGN. At the same time, understanding the fragmentation conditions is important to determine under which conditions AGN discs would fragment and form stars and whether, through disc fragmentation, protostellar discs might form giant gaseous planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlstrom J., Holder G. and Reese E., Annu. Rev. Astron. Astrophys., 40 (2002) 643.

    Article  ADS  Google Scholar 

  2. Springel V., White S. et al., Nature, 435 (2005) 629.

    Article  ADS  Google Scholar 

  3. Rosati P., Borgani S. and Norman C., Annu. Rev. Astron. Astrophys., 40 (2002) 539.

    Article  ADS  Google Scholar 

  4. Dodelson S., Modern Cosmology (Academic Press, Amsterdam) 2003.

    Google Scholar 

  5. Perlmutter S., Phys. Today, April issue (2003) 53.

    Google Scholar 

  6. Spergel D. et al., Astrophys. J. Suppl., 148 (2003) 175.

    Article  ADS  Google Scholar 

  7. Bahcall N. A., Ostriker J. P., Perlmutter S. and Steinhardt P. J., Science, 284 (1999) 1481.

    Article  ADS  Google Scholar 

  8. Tegmark M. et al., Phys. Rev. D, 69 (2004) 103501.

    Article  ADS  Google Scholar 

  9. White S., Efstathiou G. and Frenk C., Mon. Not. R. Astron. Soc., 262 (1993) 1023.

    Article  ADS  Google Scholar 

  10. Kolb E. and Turner M., The Early Universe (Addison-Wesley, Redwood City, CA) 1990.

    MATH  Google Scholar 

  11. Komatsu E. et al., Astrophys. J. Suppl., 148 (2003) 119.

    Article  ADS  Google Scholar 

  12. Padmanabhan T., Structure Formation in the Universe (Cambridge University Press, Cambridge) 1994.

    Google Scholar 

  13. Bryan G. and Norman M., Astrophys. J., 495 (1998) 80.

    Article  ADS  Google Scholar 

  14. Kaiser N., Mon. Not. R. Astron. Soc., 222 (1986) 323.

    Article  ADS  Google Scholar 

  15. Binney J. and Tremaine S., Galactic Dynamics (Princeton University Press, Princeton, USA) 1987.

    MATH  Google Scholar 

  16. Press W. and Schechter S., Astrophys. J., 187 (1974) 425.

    Article  ADS  Google Scholar 

  17. White S. D. M., Cosmology and Large Scale Structure, Proceedings of Les Houches Summer School, edited by Schaeffer R. et al. (Elsevier, Amsterdam) 1996.

  18. Eke V., Cole S. and Frenk C., Mon. Not. R. Astron. Soc., 281 (1996) 703.

    Article  ADS  Google Scholar 

  19. Norman M. L., Matter and Energy in Clusters of Galaxies, ASP Conference Series, edited by Boyer S. and Hwang C.-Y., Vol. 301 (Astronomical Society of the Pacific, San Francisco) 2003, p. 419.

    ADS  Google Scholar 

  20. Frenk C. et al., Astrophys. J., 525 (1999) 554.

    Article  ADS  Google Scholar 

  21. Katz N., Weinberg D. and Hernquist L., Astrophys. J. Suppl., 105 (1996) 19.

    Article  ADS  Google Scholar 

  22. Springel V., Yoshida N. and White S., New Astron., 6 (2001) 79.

    Article  ADS  Google Scholar 

  23. Bryan G. and Norman M., Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics, edited by Clarke D. A. and Fall M., ASP Conf. Ser. No. 123 (1997).

  24. Kravtsov A., Klypin A. and Kokhlov A., Astrophys. J. Suppl., 1997 (111) 73.

    Article  ADS  Google Scholar 

  25. Teyssier R., Astron. Astrophys., 385 (2002) 337.

    Article  ADS  Google Scholar 

  26. O'shea B. et al., Adaptive Mesh Refinement—Theory and Applications, edited by Plewa T. et al., Springer Lect. Notes Comput. Sci. Engin. (Springer, Berlin) 2005.

    Google Scholar 

  27. Springel V. et al., Mon. Not. R. Astron. Soc., 328 (2001) 726.

    Article  ADS  Google Scholar 

  28. Anninos P. et al., New Astron., 2 (1997) 209.

    Article  ADS  Google Scholar 

  29. Ponman T., Cannon D. and Navarro J., Nature, 397 (1999) 135.

    Article  ADS  Google Scholar 

  30. Efstathiou G. et al., Astrophys. J. Suppl., 57 (1985) 241.

    Article  ADS  Google Scholar 

  31. Couchman, H., Astrophys. J. Lett., 368 (1991) L23.

    Article  ADS  Google Scholar 

  32. Barnes J. and Hut P., Nature, 324 (1986) 446.

    Article  ADS  Google Scholar 

  33. Warren M. and Salmon J., Comput. Phys. Commun., 87 (1995) 266.

    Article  ADS  Google Scholar 

  34. Xu G., Astrophys. J. Suppl., 98 (1995) 355.

    Article  ADS  Google Scholar 

  35. Evrard A., Mon. Not. R. Astron. Soc., 235 (1988) 911.

    Article  ADS  Google Scholar 

  36. Kravtsov A., Klypin A. and Hoffman Y., Astrophys. J., 571 (2002) 563.

    Article  ADS  Google Scholar 

  37. Kang H. et al., Astrophys. J., 428 (1994) 1.

    Article  ADS  Google Scholar 

  38. Bryan G. et al., Astrophys. J., 428 (1994) 405.

    Article  ADS  Google Scholar 

  39. Borgani S. et al., Mon. Not. R. Astron. Soc., 348 (2004) 1078.

    Article  ADS  Google Scholar 

  40. Berger M. and Colella P., J. Comput. Phys., 82 (1989) 64.

    Article  ADS  Google Scholar 

  41. Hockney R. and Eastwood J., Computer Simulation Using Particles (McGraw Hill, New York) 1988.

    Book  MATH  Google Scholar 

  42. Colella P. and Woodward P. R., J. Comput. Phys., 54 (1984) 174.

    Article  ADS  Google Scholar 

  43. Anninos W. Y. and Norman M. L., Astrophys. J., 429 (1994) 434.

    Article  ADS  Google Scholar 

  44. Cen R. and Ostriker J., Astrophys. J., 417 (1993) 404.

    Article  ADS  Google Scholar 

  45. Navarro J., Frenk C. and White S., Astrophys. J., 462 (1996) 563.

    Article  ADS  Google Scholar 

  46. Motl P. et al., Astrophys. J. Lett., 623 (2005) L63.

    Article  ADS  Google Scholar 

  47. Loken C. et al., Astrophys. J., 579 (2002) 571.

    Article  ADS  Google Scholar 

  48. Motl P. et al., Astrophys. J., 606 (2004) 635.

    Article  ADS  Google Scholar 

  49. Hallman E. et al., preprint astro-ph/0509460.

  50. Vikhlinin A. et al., Astrophys. J., 628 (2005) 655.

    Article  ADS  Google Scholar 

  51. Ascasibar Y. et al., Mon. Not. R. Astron. Soc., 346 (2003) 731.

    Article  ADS  Google Scholar 

  52. Davis M. et al., Astrophys. J., 292 (1985) 371.

    Article  ADS  Google Scholar 

  53. Eisenstein D. and Hut P., Astrophys. J., 498 (1998) 137.

    Article  ADS  Google Scholar 

  54. Henry J. P. and Arnaud K., Astrophys. J., 372 (1991) 410.

    Article  ADS  Google Scholar 

  55. Bahcall N., Fan X. and Cen R., Astrophys. J., 485 (1997) L53.

    Article  ADS  Google Scholar 

  56. Bryan G., Astrophys. J., 544 (2000) L1.

    Article  ADS  Google Scholar 

  57. Voit M. and Bryan G., Astrophys. J., 551 (2001) L139.

    Article  ADS  Google Scholar 

  58. Ruszkowski M., Bruggen M. and Begelman M., Astrophys. J., 611 (2004) 158.

    Article  ADS  Google Scholar 

  59. Da Silva A. et al., Mon. Not. R. Astron. Soc., 348 (2004) 1401.

    Article  ADS  Google Scholar 

  60. Buote D. A., Astrophys. J., 539 (2000) 172.

    Article  ADS  Google Scholar 

  61. Allen S. and Fabian A., Mon. Not. R. Astron. Soc., 297 (1998) L57.

    Article  ADS  Google Scholar 

  62. Markevitch M. et al., Astrophys. J., 503 (1998) 77.

    Article  ADS  Google Scholar 

  63. De Grandi S. and Molendi S., Astrophys. J., 567 (2002) 163.

    Article  ADS  Google Scholar 

  64. Fabian A. C., Annu. Rev. Astron. Astrophys., 32 (277) 1994.

    Google Scholar 

Download references

Acknowledgments

I would like to dedicate this paper to the memory of Eduardo Delgado-Donate, who contributed to the development of some of the ideas presented here. I acknowledge several interesting discussions with G. Bertin, C. Clarke, A. King, S. Nayakshin and J. Pringle. I would also like to thank the various collaborators with whom I have worked on these issues along the years, and in particular P. Armitage, P. Natarajan and K. Rice.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodato, G. Self-gravitating accretion discs. Riv. Nuovo Cim. 30, 293–353 (2007). https://doi.org/10.1393/ncr/i2007-10022-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10022-x

Key words

Navigation