Skip to main content
Log in

VUV and X-Ray Free-Electron Lasers: The technology and its scientific promise

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Currently available, fully coherent (laser) light sources emit radiation only in a limited range of wavelengths in the infrared, visible and near-ultraviolet range, excluding their use in all the measurements needing tunable photons of energy higher than a few eV. Consequentially, the strong scientific need for tunable, coherent radiation sources from the vacuum ultraviolet (VUV) to the X-ray in the femtosecond and picosecond time domain has spurred international research efforts to develop a new generation of research facilities. Laser-driven light sources that use non-linear processes to create very high harmonics and the interaction between an ultra-short laser pulse and an electron bunch in a storage ring are both able to produce radiation pulses in the femtosecond time domain and in the soft EUV and X-ray region, but with a relatively low useful photon flux on the sample. In contrast Free-Electron Lasers (FELs) can produce light pulses with peak brilliance as much as ten orders of magnitude higher than the pulses generated in present third-generation synchrotron light sources and with photon energies ranging from the VUV to the hard X-rays, i.e. from about 10eV (120nm) to 10keV (0.12nm). This manuscript reviews the scientific fields that can be opened or extended by the new techniques along with the progress of FEL physics and the supporting accelerator physics and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barletta W. A. and Winick H. “Introduction to special section on future light sources”, Nucl. Instrum. Methods A, 500 (2003) 1.

    Article  ADS  Google Scholar 

  2. Energy recovery linacs (ERL) were first proposed by Tigner M., “A possible apparatus for clashing-beam experiments”, Nuovo Cimento, 37 (1965) 1228.

    Article  Google Scholar 

  3. Reid D. T., “LASER PHYSICS: Toward Attosecond Pulses”, Science, 291 (2001) 1911 Drescher M., Hentschel M., Kienberger R., Tempea G., Spielmann C., Reider G. A., Corkum P. B. and Krausz F., “X-ray Pulses Approaching the Attosecond Frontier”, Science, 291 (2001) 1923.

    Article  Google Scholar 

  4. See Schiff L. I., Rev. Sci. Instrum., 17 (1946) 6.

    Article  ADS  Google Scholar 

  5. Warnock R. L., “Shielded Synchrotron Radiation and Its Effect on Very Short Bunches”, SLAC PUB-5575, November 1990.

    Google Scholar 

  6. Dohlus M. and Limberg T., “Emittance Growth due to Wake Fields on Curved Bunch Trajectories”, in XVIII International Free Electron Laser Conference, Rome, 1966, Nucl. Instrum. Methods Phys. Res. A, 393 (1996) 494.

    Article  ADS  Google Scholar 

  7. Nodvick J. S. and Saxon D. S., Phys. Rev., 96 (1954) 180.

    Article  ADS  Google Scholar 

  8. Saldin E. L., Schneidmiller E. A. and Yurkov M. V., Nuc. Instrum. Methods A, 398 (1997) 373.

    Article  ADS  Google Scholar 

  9. See Corlett J. N., Barry W., Byrd J. M., Schoenlein R. and Zholents A., “Synchronization of X-ray Pulses to the Pump Laser in an Ultrafast X-ray Facility”, in Proceedings of the 8th European Particle Accelerator Conference (EPAC-2002), Paris, France, pp. 671–673.

  10. For three examples see “LCLS, The First Experiments”, and “Visions of Science: The BESSY SASE-FEL”, http://www.bessy.de/publicRelations/publications/files/sc.pdf and the TESLA TDR, Part V, “The X-Ray Free Electron Laser”, edited by Materlik G. and Tschenscher Th., http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html (2001).

    Google Scholar 

  11. Examples include Jurek Z. Faigel G. and Tegze M., “Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses”, Euro. Phys. J. D, 29 (2004) 217; Jurek Z. Oszlanyi G. and Faigel G., “Imaging atom-clusters by hard X-ray free electron lasers”, Europhys. Lett., 65 (2004) 491. A large number of time-resolved Laue experiments have been performed by the BioCARS collaboration at the Advanced Photon Source; see http://cars9.uchicago.edu/biocars/pages/timeresolvedpubs.html.

    Article  ADS  Google Scholar 

  12. LCLS Conceptual Design Report, SLAC-R-593 (2002). The report can be found at http://www-ssrl.slac.stanford.edu/lcls.

  13. See Corlett J., Desantis S., Hartman N., Heimann P., Lafever R., Li D., Padmore H., Rimmer R., Robinson K. E., Schoenlein R., Tanabe J., Wang S., Zholents A. and Kairan D., “A Dedicated Synchrotron Light Source For Ultrafast X-Ray Science”, in Proceedings of the Eighth European Particle Accelerator Conference (EPAC-2002), Paris, France, pp. 668–670. Unfortunately in the US the time was not yet ripe for this proposal.

  14. For example see, Sorokin A. A. et al., “Method based on atomic photoionization for spot-size measurement on focused soft X-ray free-electron laser beams”, Appl. Phys. Lett., 89 (2006) 221–114.

    Google Scholar 

  15. Chapman H. N. et al., “Femtosecond diffractive imaging with a soft-X-ray free-electron laser”, Nature Phys., 2 (2006) 839.

    Article  ADS  Google Scholar 

  16. Neutzo R. et al., “Potential for biomolecular imaging with femtosecond X-ray pulses”, Nature, 406 (2000) 752.

    Article  ADS  Google Scholar 

  17. Marchesini S. et al., “X-ray image reconstruction from a diffraction pattern alone”, Phys. Rev. B, 68 (2003) 140101.

    Article  ADS  Google Scholar 

  18. Leone S., Corlett J., Lidia S. and Robinson A., Scientific Directions in Ultrafast X-ray Science, unpublished LBNL internal report (2003). See footnote (8).

  19. A thorough description of the first experimental campaign in warm dense matter studies at LCLS can be found in LCLS The First Experiments–Plasma and Warm Dense Matter, September 2000, http://www-ssrl.slac.stanford.edu/lcls/papers/lcls_experiments_2.pdf.

  20. Lee R., www.llnl.gov/tid/lof/documents/pdf/320150.pdf.

  21. For an example, see Stojanovic N. et al., “Ablation of solids using a femtosecond extreme ultraviolet free electron laser”, Appl. Phys. Lett., 89 (2006) 241909.

    Article  ADS  Google Scholar 

  22. Logan B. G. et al., An Integrated High Energy Density Physics Program at LBNL Based in the Office of Science, unpublished LBNL report (2003).

    Google Scholar 

  23. Zhou X. J. et al., J. Electr. Spectrosc. Related Phenomena, 142 (2005) 27.

    Article  Google Scholar 

  24. The free-electron laser was first proposed by John Madey in 1971; see Madey J. M. J., J. Appl. Phys., 42 (1971) 1906. Madey’s concept was itself predated by similar concepts for the amplification of microwave radiation; Philips R. M., IRE Trans. Electron Devices, 7 (1960) 231. Madey and his co-workers demonstrated both the operation of an FEL amplifier and an FEL oscillator; Elias L. R., Fairbank W. M., Madey J. M. J., Schwettman H. A. and Smith T. I., Phys. Rev. Lett., 36 (1976) 717; Deacon D. A. G., Elias L. R., Madey J. M. J., Ramian G. J., Schwettman H. A. and Smith T. I., Phys. Rev. Lett., 8 (1977) 892.

  25. Early analyses of the systematics of the FEL process including the derivation of the high-gain regime are given in Bambini A., Renieri A. and Stenholm S., “Classical theory of the free electron laser in a moving frame”, Phys. Rev. A, 19 (1979) 2013; Louisell W. H., Lam J. F., Copeland D. A. and Colson W. B., “Exact classical electron dynamic approach for a free-electron laser amplifier”, Phys. Rev. A, 19, no. 1 (1979) Another important early analysis was given by Kroll N. M., Morton P. L. and Rosenbluth M. N., IEEE J. Quantum Electron., QE 17 (1981) 1436. It was this latter paper that provided the basis of the computer model for designing the first successful high-gain experiment.

    Article  Google Scholar 

  26. Sessler A. M., “Laser Acceleration of Particles”, AIP Conf. Proc., 91 (1982) 154. Other early experiments at low wavelengths include Kirkpatrick D. A., Bekefi G., Dirienzo A. C., Freund H. P. and Ganguly A. K., “A Millimeter and Submillimeter Wavelength Free-Electron Laser”, Phys. Fluids B, 1 (1989) 1511. Also, Kirkpatrick D. A., Bekefi G., Dirienzo A. C., Freund H. P. and Ganguly A. K., “A High Power 600mm Wavelength Free-Electron Laser”, Nucl. Instrum. Methods A, 285 (1989) 43.

    Article  ADS  Google Scholar 

  27. Bonifacio R., Pellegrini C. and Narducci L., Opt. Commun., 50 (1984) 373, hereinafter BPN. An excellent elaboration of the basics of free electron laser theory is presented in the review article, Bonifacio R. et al., Riv. Nuovo Cimento, 13, No. 9 (1990). Another lengthy exposition from first principles is Saldin E. L., Schneidmiller E. A. and Yurkov M. V., “The physics of free electron lasers. An introduction”, Phys. Rep., 260, Issue 4-5 (1995) 187.

    Article  ADS  Google Scholar 

  28. Materlik G. and Tschenscher Th. (Editors), TESLA Technical Design Report, Part V, The X-Ray Free Electron Laser (2001), p. 25, http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html.

    Google Scholar 

  29. Shay H. D. et al., “Use of a FEL as a Buncher for a TBA Scheme”, in Proceedings of the International FEL Conference, Paris, 1990, Nucl. Instrum. Methods Phys. Res. A, 304 (1991) 262.

    Article  ADS  Google Scholar 

  30. Barletta W. A., Bonifacio R., Pierini P. et al., “An rf-linac, FEL buncher”, Nucl. Instrum. Methods A, 329 (1993) 348. This concept was applied to the generation of femtosecond X-ray pulses in Barletta W. A., Bonifacio R. and Pierini P., “High brilliance, femtosecond X-ray sources with FEL assist”, in Proceedings of 4th Generation Light Sources Workshop, Stanford, CA, 24-27 February 1992, SSRL Report 92/02. “We describe EFSX... to produce multi-kiloampere pulses... in the generation of extremely short bursts of X-rays. The key technical concept, the use of the free electron laser as a bunching mechanism... As laser photocathode sources of beams evolve to yield ever better emittances, the EFSX could be easily retrofitted to furnish the drive beam for an efficient X ray free electron laser.” These early ideas matured into the ESASE concept discussed later in this review.

    Article  ADS  Google Scholar 

  31. Barletta W. A., Sessler A. M. and Yu L-H, “Physically transparent formulation of a free-electron laser in the linear gain regime”, Nucl. Instrum. Methods A, 331 (1993) 491. The analysis of this paper is based on a numerical model and fitting of earlier analyses of Yu L.-H., Krinsky S. and Gluckstern R. L., Phys. Rev. Lett., 64 (1990) 3011 and of Chin Y.-H., Kim K.-J. and Xie M., LBL Report 30673 (Sept. 1991).

    Article  ADS  Google Scholar 

  32. Murphy J. B., Pellegrini C. and Bonifacio R., “Collective Instability of a Free Electron Laser including Space Charge and Harmonics”, Opt. Commun., 53 (1985) 197.

    Article  ADS  Google Scholar 

  33. Bonifacio R., Salvo L. D., Pierini P., Piovella N. and Pellegrini C., “Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise”, Phys. Rev. Lett., 74 (1994) 7073.

    Google Scholar 

  34. Pierini P. and Fawley W. M., “Shot Noise Startup of the 6nm SASE FEL at the TESLA Test Facility”, in Proceedings of the 17th International Free Electron LaserConference, Nucl. Instrum. Methods Phys. Res. A, 375 (1995).

  35. Andruszkow J. et al., “First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength”, Phys. Rev. Lett., 85 (2000) 3825. See also Hogan M. J., Pellegrini C., Rosenzweig J., Travish G. A., Varfolomeev A., Anderson S., Bishofberger K., Frigola P., Murkoh A., Osmanov N., Reiche S. and Tremaine A., “Measurements of High Gain and Intensity Fluctuations in a SASE FEL”, Phys. Rev. Lett., 80 (1998) 289.

    Article  ADS  Google Scholar 

  36. Saldin E. L., Schneidmiller E. A. and Yurkov M. V., “Statistical properties of radiation from VUV and X-ray free electron laser”, Opt. Commun., 148 (1998) 383.

    Article  ADS  Google Scholar 

  37. Bonifacio R., Piovella N. and Robb G. R. M., Nucl. Instrum. Methods A, 543 (2005) 645 Bonifacio R., “Quantum SASE FEL with laser wiggler”, Nucl. Instrum. Methods Phys. Res. A, 546 (2005) 634 See also Piovella N. and Robb G. R. M., “Quantum theory of SASE FEL”, Nucl. Instrum. Methods Phys. Res. A, 543 (2005) 645.

    Article  ADS  Google Scholar 

  38. This parameter was first introduced by Bonifacio R. and Casagrande F. Opt. Commun., 50 (1984) 251 and Bonifacio R. and Casagrande F. Nucl. Instrum. Methods A, 237 (1985) 168. Another early formulation of a quantum-mechanical theory of the FEL was published by Preparata G. “Quantum Field Theory of the Free Electron Laser”, Phys. Rev. A, 38 (1988). Other quantum-mechanical descriptions of the FEL process have been published by Belenov E. M., Grigorev S. V., Nazarkin A. V. and Smetanin I. V., Sov. Phys. JETP, 78 (1994) 431 Schroeder C. B., Pellegrini C. and Chen P., Phys. Rev. E, 64 (2001) 056502. However these earlier papers do not treat the peculiar characteristics of SASE systems operating deep in the quantum regime.

    Article  Google Scholar 

  39. Bonifacio R., “Quantum SASE FEL with laser undulator”, Nucl. Instrum. Methods, 546 (2005) 634.

    Article  ADS  Google Scholar 

  40. Xie M., “Design Optimization for an X-Ray Free Electron Laser Driven by SLAC Linac”, Proc. IEEE Part. Accel. Conf., 1 (1995) 183.

    Article  ADS  Google Scholar 

  41. Scharlemann E. T., Fawley W. M. et al., Proc. IEEE Part. Accel. Conf. 93CH3279-7 (1993) 1530.

    Google Scholar 

  42. Yu L.-H., Krinsky S. and Gluckstern R. L., Phys. Rev. Lett., 64 (1990) 3011 Chin Y.-H., Kim K.-J. and Xie M., LBL Report 30673 (Sept. 1991) and Proceedings of the FEL 1991 Conference, Santa Fe, NM.

  43. Orzechowski T. J. et al., Phys. Rev. Lett., 57 (1986) 2172.

    Article  ADS  Google Scholar 

  44. Fawley W. M., Huang Z., Kim K-J and Vinokurov N. A., “Tapered undulators for SASE FELs”, Nucl. Instrum. Methods A, 483 (2002) 537.

    Article  ADS  Google Scholar 

  45. Bonifacio R. and Casagrande F., “Classical and Quantum Treatment of Amplifier and Superradiant Free-Electron Laser Dynamics”, J. Opt. Soc. Am. B: Opt. Phys. 2 (1985) 250.

    Article  ADS  Google Scholar 

  46. Bonifacio R., Casagrande F., Cerchioni C., de Salvo-souza L., Pierini P. and Piovella N., “Physics of the High Gain FEL and Super-radiance” Riv. Nuovo Cimento, 13, No. 9 (1990).

  47. Shintake T., Tanaka T., Hara T., Togawa K., Inagaki T., Kim yujong, ishikawa T., Kitamura H., Matsumoto H., Takeda S., Yoshida M. and Takasu Y., “Status of SCSS: SPring-8 Compact SASE Source Project”, in Proceedings of the 8th European Particle Accelerator Conference (EPAC-2002), Paris, France, pp. 840–842. See also http://www-xfel.spring8.or.jp/SCSS.htm.

  48. Ayvazyan V. et al., “First operation of a free-electron laser generating GW power radiation at 32 nm wavelength”, Eur. Phys. J. D, 37 (2006) 297.

    Article  ADS  Google Scholar 

  49. TESLA-Technical Design Report, DESY 2001-011, ECFA 2001-209, CDROM, March 2001. See http://tesla.desy.de/new_pages/tdr_update/start.html.

  50. Orzechowski T. et al., Phys. Rev. Lett., 54 (1985) 889. The gain precisely measured was the highest ever seen in a free-electron laser, nearly one-folding in power every undulator period.

    Article  ADS  Google Scholar 

  51. Tremaine A. et al., “Characterization of an 800 nm SASE FEL at Saturation”, presented at the 2001 Free-Electron Laser Conference, Darmstadt, Germany, Aug. 20-24, 2001, Nucl. Instrum. Methods Phys. Res. A, 483 (2001) 24.

    Article  ADS  Google Scholar 

  52. Milton S. V. et al., “Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser”, Science, 292 (2001) 2037.

    Article  ADS  Google Scholar 

  53. Sajaev V. et al., Nucl. Instrum. Methods, A, 506 (2003) 304; Sajaev V. and Huang Z., Nucl. Instrum. Methods A, 507 (2003) 154.

    Article  ADS  Google Scholar 

  54. See “SASE FEL at the TESLA Facility, Phase 2”, DESY Report TESLA-FEL 2002-01, June 2002.

    Google Scholar 

  55. Ayvazyan V. et al., “Generation of GW Radiation Pulses from a VUV Free-Electron Laser Operating in the Femtosecond Regime”, Phys. Rev. Lett., 88 (2002).

  56. Zholents A. A., Fawley W. M., Emma P., Huang Z., Stupakov G. and Reiche S., “Current-Enhanced SASE Using An Optical Laser And Its Application to the LCLS”, SLAC-PUB-10713, (2004). See also Zholents A. A. and Fawley W. M., Phys. Rev. Lett., 92 (2004) 224-801.

    Google Scholar 

  57. Saldin E. L., Schneidmiller E. A. and Yurkov M. V., “Terawatt-scale sub-10-fs laser technology–key to generation of GW-level attosecond pulses in X-ray free electron laser”, Opt. Commun., 237 (2004) 153.

    Article  ADS  Google Scholar 

  58. This concept was first introduced by Zholents A. and Zolotorev M. “Femtosecond X-ray pulses of synchrotron radiation”, Phys. Rev. Lett., 76 (1996) 912. This technique of strong energy modulation was demonstrated experimentally at the Advanced Light Source and used to make 200fs X-ray pulses. Schoenlein R. W., Chattopadhyay S. Chong H., Glover E., Heimann P., Shank C., Zholents A., Zolotorev M. et al., “Generation of femtosecond pulses of synchrotron radiation”, Science, 287 (2000) 22-37.

    Article  Google Scholar 

  59. Emma P., Bane K., Cornacchia M., Huang Z., Schlarb H., Stupakov G. and Walz D., “Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission-Based Free-Electron Laser”, Phys. Rev. Lett., 92 (2004) 748011. This paper presents a concept of selecting a femtosecond or sub-femtosecond pulse by spoiling the transverse emittance of the electron beam outside of the time slice during which the X-ray generation is desired. The scheme rests on the high degree of sensitivity of the SASE process to the beam emittance.

    Article  Google Scholar 

  60. Huang Z. and Kim K-J., “Nonlinear harmonic generation of coherent amplification and self-amplified spontaneous emission”, Nucl. Instrum. Methods A, 475 (2001) 112.

    Article  ADS  Google Scholar 

  61. See for example, Csonka P., “Enhancement of synchrotron radiation by beam modulation”, Part. Accel., 8 (1978) 225. Also Vinokwov N. A. and Skrinskii A. N., “Oscillator klystron in the optical band using ultra-relativistic electrons”, Preprint INP 77- 59, Novosibirsk, USSR, 1977; Skrinsky A. N., Novosibirsk, Institute Report INP 78- 88. See also Kincaid B. et al., “Free Electron Laser Generation of Extreme UV Radiation”, edited by Madey J. and Pelligrini C. AIP Conf. Proc., 118 (1983).

    Google Scholar 

  62. Vinokurov N. A., in Proceedings of the 10th International Conference on Particle Accelerators, Serpukhov, 2 (1977) 454.

    Google Scholar 

  63. Girard B. et al., “Optical Frequency Multiplication by an Optical Klystron”, Phys. Rev. Lett., 53 (1984) 2504.

    Article  Google Scholar 

  64. Bonifacio R., de Salvo souza L., Pierini P. and Scharlemann E. T., “Generation of XUV light by resonant frequency tripling in a two-undulator FEL amplifier”, Nucl. Instrum. Methods A, 296 (1990) 787.

    Article  ADS  Google Scholar 

  65. Yu L. H., Phys. Rev A, 44 (1991) 5178.

    Article  ADS  Google Scholar 

  66. Yu L. H. et al., Science, 289 (2000) 932; “First Ultraviolet High-Gain HarmonicGeneration Free Electron Laser”, Phys. Rev. Lett., 91 (2003) 748011.

    Article  ADS  Google Scholar 

  67. Brefeld W. et al., “Study of the frequency multiplication process in a multistage HGHG FEL”, Nucl. Instrum. Methods A, 483 (2002) 80.

    Article  ADS  Google Scholar 

  68. For example see Saldin E. L., Schneidmiller E. A. and Yurkov M. V., “Study of a noise degradation of amplification process in a multistage HGHG FEL”, Opt. Commun., 202 (2002) 169. The authors conclude that, “The results presented in this paper have demonstrated that the HGHG FEL approach is quite adequate for a 10-100 nm coherent source, but not scalable to an X-ray device.”

    Article  ADS  Google Scholar 

  69. For a quasi-classical interpretation of the process, see Corkum P. B., Phys. Rev. Lett., 71 (1993) 1994. Also see Lewenstein M. et al., Phys. Rev. A, 49 (1994) 21-17.

    Article  Google Scholar 

  70. Garzella D., Hara T., Carr E. B., Salieres P., Shintake T., Kitamura H. and Couprie M. E., “Using VUV high-order harmonics generated in gas as a seed for single pass FEL”, Nucl. Instrum. Methods A, 528 (2004) 502.

    Article  ADS  Google Scholar 

  71. At 11 nm normal incidence reflectivities of ~ 70% have been measured in a 50 period Mo-Be multi-layer optic, Bajt S., J. Vac. Sci. Technol., 18 (2000) 557 Mirkarimi P. B., Bajt S. and Wall M. A., “Mo Si and Mo Be Multilayer Thin Films on Zerodur Substrates for Extreme-Ultraviolet Lithography”, Appl. Opt., 39 (2000) 1617.

  72. Nguyen D. C., Earley L. M., Ebrahim N. A., Fortgang C. M., Goldstein J. C., Harrison R. F., Reass W. A., Kinross-wright J. M., Sheffield R. L. and Volz S. K., “Regenerative Amplifier FEL”, in Proceedings of the XX International Linac Conference, Monterey, California (2000).

  73. Thompson N. R., Poole M. W. and Mcneil B. W. J., “A VUV-FEL for 4GLS: Design Concept and Simulation Results”, in Proceedings of the International FEL Conference, Stanford, California (2005), p. 97.

  74. Zholents alexander A. and Fawley William M., “Proposal for Intense Attosecond Radiation from an X-Ray Free-Electron Laser”, Phys. Rev. Lett., 92 (2004).

  75. Saldin E. L., Schneidmiller E. A. and Yurkov M. V., “Attosecond Pulses from X-Ray FEL with an Energy-Chirped Electron Beam and a Tapered Undulator”, Proceedings of FEL 2006, BESSY, Berlin, Germany, p. 202.

  76. Sessler A. M., Whittum D. H. and Yu L.-H., Phys. Rev. Lett., 68 (1992) 309.

    Article  ADS  Google Scholar 

  77. Vinokurov N. A., “Multisegment undulators for short wavelength FEL”, Nucl. Instrum. Methods, 375 (1996) 264.

    Article  ADS  Google Scholar 

  78. Schroeder C. B., Esarey E. and Leemans W. P., “Electron-beam conditioning by Thomson scattering”, Phys. Rev. Lett., 93 (2004) 194–801.

    Article  Google Scholar 

  79. Zholents A. A., “Laser assisted electron beam conditioning for free electron lasers”, Phys. Rev. Special Topics, Accelerators and Beams, 8 (2005) 050701.

    Article  ADS  Google Scholar 

  80. Emma P. and Stupakov G., Phys. Rev. Special Topics, Accelerators and Beams, 6 (2002) 030701.

    Article  Google Scholar 

  81. Wolski A., Penn G., Sessler A. and Wurtele J., “Beam conditioning for free electron lasers: Consequences and methods”, Phys. Rev. ST Accel. Beams, 7 (2004) 080701.

    Article  ADS  Google Scholar 

  82. Penman C. and Mcneil B. W. J., Opt. Commun., 90 (1992) 82.

    Article  ADS  Google Scholar 

  83. Reiche S., Nucl. Instrum. Methods A, 429 (1999) 243.

    Article  ADS  Google Scholar 

  84. Fawley W. M., An Informal Manual for GINGER and its post-processor XPLOTGIN, LBID-2141, CBP Technical Note-104, UC-414, 1995.

    Google Scholar 

  85. Freund H. P. and Antonsen T. M. jr., in Freund H. P. (Editor), Principles of Free-electron Lasers, 2nd Edition (Chapman & Hall, London) 1986; Phys. Rev. E, 52 (1995) 5401.

  86. Dejus R. J., Shevchenko O. A. and Vinokurov N. A., “An integral equation based computer code for high-gain free-electron lasers”, Nucl. Instrum. Methods A, 429 (1999) 225.

    Article  ADS  Google Scholar 

  87. Tran T. M. and Wurtele J. S., Computer Phys. Commun., 54 (1989) 263; Reiche S. and Faatz B., “Influence of electron beam halos on the FEL performance”, Nucl. Instrum. Methods Phys. Res. A, 429 (1999) 238.

  88. Biedron S. G., Chae Y. C., Dejus R. J., Faatz B., Freund H. P., Milton S. V., Nuhn H.-D. and Reiche S., “Multi-dimensional free-electron laser simulation codes: a comparison study”, Nucl. Instrum. Methods A, 445 (2000) 110.

    Article  ADS  Google Scholar 

  89. A summary of the status of present efforts in the development of normal conducting rf-guns can be found in Dowell D. H., Lewellen J. W., Nguyen D. and Rimmer R., “The status of normal conducting RF (NCRF) guns, a summary of the ERL2005 workshop”, Nucl. Instrum. Methods A, 557 (2006) 61.

    Article  Google Scholar 

  90. Fraser J. and Sheffield R., Nucl. Instrum. Methods A, 250 (1986) 71.

    Article  ADS  Google Scholar 

  91. Kim K-J., “Rf and space charge effects in laser-driven rf electron guns”, Nucl. Instrum. Methods A, 275 (1989) 201.

    Article  ADS  Google Scholar 

  92. Ben-zvi I., “The BNL Accelerator Test Facility and Experimental Program”, AIP Conf. Proc., 279 (1993) 591.

    Google Scholar 

  93. The LCLS group at SLAC has made considerable design efforts in the thermal management of a 120Hz gun. See Limborg-deprey C., Dowell D., Schmerge J., Li Z. and Xiao L., “RF Design of the LCLS Gun” LCLS-TN-05-3, Feb. 2005; Xiao L., Boyce R. F., Dowell D. H., Li Z., Limborg-deprey C. and Schmerge J. F., “Dual Feed RF Gun Design for the LCLS”, in Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, paper TPPE058; Schmerge J. F., Castro J., Clendenin J. E., Dowell D. H., Gierman S. M. and Loos H., “The S-band 1.6 Cell RF Gun Correlated Energy Spread Dependence on p and 0 Mode Relative Amplitude”, in ICFA Workshop on “The Physics and Applications of High Brightness Electron Beams”, Erice, Sicily, October 9-14, 2005 (World Scientific, Singapore) 2006. Available at http://www.osti.gov/bridge/product.biblio.jsp?osti_id=876591.

  94. For a comparison with measurements at the SLAC Gun Test facility see, Huang Z., Dowell D., Emma P., Limborg-deprey C., Stupakov G. and Wu J., “Uncorrelated energy spread and longitudinal emittance of a photoinjector beam”, in Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN (IEEE) 2005, p. 3570.

  95. For example see Lee E. P. and Yu S. S., Nucl. Fusion, 21 (1981) 961; Wangler T. P., Crandall K. R., Mills R. S. and Reiser M., “Relation Between Field Energy and RMS Emittance in Intense Particle Beams”, IEEE Trans. Nucl. Sci., 32 (1985) 2196; Reiser M., Chang C. R., Kehne D., Low K., Shea T., Rudd H. and Haber I., “Emittance Growth and Image Formation in a Nonuniform Space-Charge-Dominated Electron Beam”, Phys. Rev. Lett., 61 (1988) 2933; Carlsten B., “Growth rate of non-thermodynamic emittance of intense electron beams”, Phys. Rev. E, 58 (1998) 2489.

    Article  Google Scholar 

  96. Lee E. P. and Cooper R. K., General Envelope Equation for Cylindrically Symmetric Charged-Particle Beams, Part. Accel., 27 (1976) 83.

    Google Scholar 

  97. Serafini L. and Rosenzweig J. B., “Envelope analysis of intense relativistic quasilaminar beams in rf photo-injectors; a theory of emittance compensation”, Phys. Rev. E, 55 (1997) 7565.

    Article  ADS  Google Scholar 

  98. Anderson S. G. and Rosenzweig J. B., “Nonequilibrium transverse motion and emittance growth in ultrarelativistic space-charge dominated beams”, Phys. Rev. Special Topics, Accelerators and Beams, 3 (2000). For applications of these analyses to the LCLS and other SASE FELs see Ferrario M. et al., “HOMDYN Study for the LCLS RF Photoinjector”, in The Physics of High Brightness Beams, edited by Rosenzweig J. and Serafini L. (World Scientific, Singapore) 2000, ISBN 981-02-4422-3; Ferrario M. et al., “Beam Dynamics in a high brightness linac for short wavelength SASE-FEL experiments”, New J. Phys., 8 (2006) 295.

  99. Carlsten B. E., “New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator”, Nucl. Instrum. Methods A, 285 (1989) 313.

    Article  ADS  Google Scholar 

  100. Cornacchia M., Di Mitri S., Penco G. and Zholents A., “Formation of electron bunches for harmonic cascade X-ray free electron lasers”, Phys. Rev. Special Topics, Accelerators and Beams, 9 (2006) 120701.

    Article  ADS  Google Scholar 

  101. Carlsten B. E., Nucl. Instrum. Methods A, 285 (1989) 313.

    Article  ADS  Google Scholar 

  102. See Nguyen D. C. et al., Nucl. Instrum. Methods Phys. Res. A, 528 (2004) 71.

    Article  ADS  Google Scholar 

  103. Staples J. W., Lidia S. M., Virostek S. P. and Rimmer R. A., “The LBNL Femtosource 10 kHz Photoinjector”, Proc. IEEE Part. Accel. Conf., 1 (2003) 2092.

    ADS  Google Scholar 

  104. Corlett J. N., Barletta W. A., Desantis S., Doolittle L., Fawley W. M., Green M. A., Heimann P., Leone S., Lidia S., Li D., Ratti A., Robinson K., Schoenlein R., Staples J., Wan W., Wells R., Wolski A., Zholents A., Parmigiani F., Placidi M., Pirkl W., Rimmer R. A. and Wang S., “A recirculating linac-based facility for ultra fast x-ray science”, Proc. IEEE Part. Accel. Conf., 1 (2003) 186.

    ADS  Google Scholar 

  105. First proposed in Chaloupka H., Heinrichs H., Michalke A., Piel H., Sinclair C. K., Ebelin F., Weiland T., Klein U. and Vogel H. P., “A proposed superconducting photoemission source of high brightness”, Nucl. Instrum. Methods Phys. Res. A, 285 (1989) 327.

    Article  ADS  Google Scholar 

  106. Janssen et al., “First operation of a superconducting RF-gun”, Nucl. Instrum. Methods Phys. Res. A, 507 (2003) 314. Extraction fields of 22MeV/m were attained and little variation in cavity Q was seen with and without the cathode inserted

    Article  ADS  Google Scholar 

  107. Rao T., Ben-zvi I., Burrill A., Hahn H., K.wijan D., Zhao Y., Bluem H., Cole M., Favale A., Peterson E., Schultheiss T. and Rathke J., “Design, construction and performance of all niobium superconducting radio frequency electron gun”, Nucl. Instrum. Methods A, 562 (2006) 22.

    Article  ADS  Google Scholar 

  108. Smedley J. et al., “Progress on lead photocathodes for superconducting injectors”, in Proc. IEEE Part. Accel. Conf., Knoxville, TN (2005).

  109. Janssen D. and Volkov V. Nucl. Instrum. Methods A, 452 (2000) 34.

    Article  ADS  Google Scholar 

  110. Ferrario M., Moeller W. D., Rosenzweig J. B., Sekutowicz J. and Travish G., “Optimization and beam dynamics of a superconducting radio-frequency gun”, Nucl. Instrum. Methods A, 557 (2006) 98.

    Article  ADS  Google Scholar 

  111. A simulation study is described in Bazarov I. V. and Sinclair C. K., Phys. Rev. Special Topics, Accelerators and Beams, 8 (2005) 034202.

    Article  Google Scholar 

  112. Sinclair C. K., “DC photoemission electron guns as ERL sources”, Nucl. Instrum. Methods A, 557 (2006) 69.

    Article  ADS  Google Scholar 

  113. Togawa K., Baba H., Onoe K., Inagaki T., Shintake T. and Matsumoto H., “CeB6 electron gun for the soft X-ray FEL project at SPring-8”, in Nucl. Instrum. Methods A, 528 (2004) 312.

    Article  ADS  Google Scholar 

  114. Togawa K., Shintake T., Baba H., Onoe K., Inagaki T. and Tanaka T., “Emittance Measurement on the CeB6 Electron Gun for the SPRING-8 Compact SASE Source”, Proceedings of the 2004 FEL Conference, pp. 351–354, available at http://www.elettra.trieste.it/fel2004/proceedings/THBxC.html.

  115. Broudy R. M., Phys. Rev. B, 1 (1970) 3430.

    Article  ADS  Google Scholar 

  116. Afif M. et al., Appl. Surface Sci., 96-98 (1996) 469.

    Article  ADS  Google Scholar 

  117. Sinclair C. K., “DC photoemission electron guns as ERL sources”, Nucl. Instrum. Methods A, 557 (2006) 69.

    Article  ADS  Google Scholar 

  118. Ben-zvi I. and Bazarov I. V., “Summary, Working Group 1: Electron guns and injector designs”, Nucl. Instrum. Methods A, 557 (2006) 337

    Article  ADS  Google Scholar 

  119. Michelato P., “Photocathodes for RF photoinjectors”, Nucl. Instrum. Methods A, 393 (1997) 455.

    Article  ADS  Google Scholar 

  120. Sertore D., Schreiber S., Floettmann K., Stephan F., Zapfe K. and Michelato P., “First operation of cesium telluride photocathodes in the TTF injector RF gun”, Nucl. Instrum. Methods Phys. Res. A, 445 (2000) 422.

    Article  ADS  Google Scholar 

  121. Tremsin A. S. and Siegmund O. H., “Polycrystalline diamond films as prospective UV photocathodes”, Proc. SPIE - Int. Soc. Opt. Eng., 4139 (2000) 16. Work at BNL to develop this material into a photocathode for superconducting guns is described in the presentation by J. Smedley, www.lasa.mi.infn.it/.../photocathode-preparation-ii/Diamond%20Amplified%20Photocathodes%201.ppt.

    ADS  Google Scholar 

  122. Strickland D. and Mourou G., Opt. Commun., 56 (1985) 219.

    Article  ADS  Google Scholar 

  123. Weiner A. M., Heritage J. P. and Kirschner E. M., J. Opt. Soc. Am. B, 5 (1988) 1563.

    Article  ADS  Google Scholar 

  124. Tournois P., Opt. Commun., 140 (1997) 245.

    Article  ADS  Google Scholar 

  125. Bane K. L. et al., “Electron Transport of a Linac Coherent Light Source (LCLS) Using the SLAC Linac”, SLAC-PUB-6200, May 1993, presented at The 1993 Particle Accelerator Conference (PAC93), Washington, DC, 17-20 May 1993.

  126. See also “Emittance Dilution Through Coherent Energy Spread Generation in Bending Systems”, Emma P. and Brinkmann R., in Proceedings of the 1997 Particle Accelerator Conference, Vancouver, BC, Canada, 1997}, Vol. 2 (1997) 1679.

  127. For a discussion of resistive wall effects on emittance, see Napoly O. and Henry O. “The Resistive-Pipe Wake Potentials for Short Bunches”, Particle Accelerators, 35 (1991) 235.

    Google Scholar 

  128. Decker F.-J., Minty M. G., Nosochkov Y., Raimondi P. and Assmann R. W., “Status of the SLC Linac” http://epaper.kek.jp/e98/PAPERS/MOP12H.PDF.

  129. Huening M., “Energy Stability Resonance Control in SCRF”, Presentation to the FNAL Machine Advisory Committee, May 10, 2004. www.fnal.gov/directorate/Fermilab_AAC/AA_May04_Huening.pdf An analysis of energy stability in a superconducting FEL driver can be found in Merminga L., Bisognano J. and Delayen J. R., “Energy stability in recirculating, energy-recovering linacs in the presence of an FEL”, Proc. EPAC 1996, http://accelconf.web.cern.ch/AccelConf/e96/PAPERS/WEPG/WEP012G.PDF.

  130. Reece C. E., “Achieving 800 kW CW beam power and continuing energy improvements in CEBAF”, www.jlab.org/diwdept/admin/publications/papers/98/ACO98-03.pdf.

  131. The Cornell-developed low level rf-control system has demonstrated 10−4 field and 0.02° phase stability with 5 mA of beam loading; Bazarov I. V., “Overview of Energy Recovery Linacs”, www.lns.cornell.edu/public/ERL/2005/ERL05-7/erl05-7.pdf See also Neumann A. and Knobloch A., “RF control of the superconducting linac for the BESSY FEL”, in Proceedings of EPAC 2004, Lucerne, Switzerland, p. 973, available at http://accelconf.web.cern.ch/AccelConf/e04/HTML/AUTHOR.HTML.

  132. For studies of the TESLA cavities, see Ayvazyan V. and Simrock S. N., “Dynamic Lorentz force detuning studies in TESLA cavities”, in Proceedings of EPAC 2004, Lucerne, Switzerland, p. 994, available at http://accelconf.web.cern.ch/AccelConf/e04/HTML/AUTHOR.HTML.

  133. The test of such a system is reported in Liepe M. et al., “Pushing the Limits: RF Field Control at High Loaded Q”in Proceedings of the Particle Accelerator Conference 2005.

  134. Tennant C., Pozdeyev, Simrock S., Sun A. and Wang H., JLAB Technical Report TN-04-008, 2004.

    Google Scholar 

  135. Tennant C. et al., “Experimental Investigation of Beam Breakup in the Jefferson Laboratory 10 kW FEL Upgrade”, in Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN (2005).

  136. Pozdeyev E. Tennant C., Bisognano J. J., Sawamura M., Hajima R. and Smith T. I., “Multipass beam breakup in energy recovery linacs”, Nucl. Instrum. Methods A, 557 (2006) 176. They note that in strongly damped, storage ring cavities the Qdipole is as small as ~ 3 × 104.

    Article  ADS  Google Scholar 

  137. As an example, see Calaga R. et al., “High Current Superconducting Cavities at RHIC”, in Proceedings of EPAC 2004, Lucerne, Switzerland, pp. 1120–1122, available at http://accelconf.web.cern.ch/AccelConf/e04/HTML/AUTHOR.HTML.

  138. Neil G. R. et al., “First operation of an FEL in same-cell energy recovery mode”, Nucl. Instrum. Methods A, 445 (2000) 192.

    Article  ADS  Google Scholar 

  139. For a listing of ERL proposals world wide see http://erl.chess.cornell.edu/WorldwideReferences.htm.

  140. Hoffstaetter G. H. et al., “The Cornell ERL Prototype Project”, in Proceedings of the IEEE Accelerator Conference, Portland OR (2003)}.

  141. Sinclair C. K., “DC photoemission electron guns as ERL sources”, Nucl. Instrum. Methods A, 557 (2006) 69; Bazarov I. V. and Sinclair C. K., “High Brightness, High Current Injector Design for the Cornell ERL Prototype”, in Proceedings of the IEEE Accelerator Conference, Portland OR (2003).

    Article  ADS  Google Scholar 

  142. Corlett J. et al., “A Dedicated Synchrotron Light Source For Ultrafast X-Ray Science”, Proceedings of the Eighth European Particle Accelerator Conference, 2002, Paris, France.

  143. Zholents A., Heimann P., Zolotorev M. and Byrd J. “Generation of subpicosecond X-ray pulses using RF orbit deflection”, Nucl. Instrum. Methods A, 425 (1999) 385.

    Article  ADS  Google Scholar 

  144. Leemans W. P., “Working Group VI Summary Report: New Ideas Employing HighPower Lasers”, in Proceedings of the ICFA Workshop on Future Light Sources, Argonne National Laboratory (2002), http://www.aps.anl.gov/conferences/FLSworkshop/proceedings/papers/wgSum6.pdf.

  145. Geddes C. G. R., Toth C.S., van Tilborg J., Esarey E. Schroeder C. B., Bruhwiler D., Nieter C., Cary J. and Leemans W. P., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding”, Nature, 431 (2004) 538; Leemans W. P. et al., “GeV electron beams from a cm-scale accelerator”, Nature Phys., 2 (2006) 696.

    Article  ADS  Google Scholar 

  146. Spence D. J. and Hooker S. M., Phys. Rev. E, 63 (2001) 015401.

    Article  ADS  Google Scholar 

  147. For a general description, see Jaroszynski D. A., Bingham R., Brunetti E., Ersfeld B., Gallacher J., van der Geer B., Issac R., Jamison S. P., Jones D., de Loos M., Lyachev A. Pavlov V., Reitsma A., Saveliev Y., Vieux G. and Wiggins S. M., “Radiation sources based on laser-plasma interactions”, Philos. Trans. R. Soc. A, 364 (2006) 689. The project website is http://phys.strath.ac.uk/alpha-x/pub/Project/project.html.

    Article  Google Scholar 

  148. Mangles S. P. D., Murphy C. D., Najmudin Z., Thomas A. G. R., Collier J. L., Dangor A. E., Divall E. J., Foster P. S., Gallacher J. G., Hooker C. J., Jaroszynski D. A., Langley A. J., Mori W. B., Norreys P. A., Tsung F. S., Viskup R. Walton B. R. and Krushelnick K., “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions”, Nature, 431 (2004) 535.

    Article  ADS  Google Scholar 

  149. Shepherd B. J. A. and Clarke J. A., “Construction and testing of a pair of focusing undulators for ALPHA-X”, in Proceedings of EPAC 2006, Edinbourgh, Scotland, p. 3580, available at http://accelconf.web.cern.ch/AccelConf/e06/HTML/AUTHOR.HTM.

  150. Schroeder C. B., Pawley W. M., Esarey E. and Leemans W. P., “Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility”, Proceedings of FEL 2006, BESSY, Berlin, Germany, p. 445, available at http://www.bessy.de/fel2006/proceedings/HTML/AUTHOR.HTM.

  151. Robinson K. E., Quimby D. C. and Slater J. M., “The tapered hybrid undulator (THUNDER) of the visible free-electron laser oscillator experiment”, IEEE J. Quantum Electron, QE-23 (1987) 1497.

    Article  ADS  Google Scholar 

  152. Zolotorev M. Proceedings of the Advanced Acceleration Concepts Workshop, Santa Fe, June, 2000.

  153. Derbenev Y. and Shiltsev V., “Transverse Effects of Microbunch Radiative Interaction”, SLAC-PUB-7181 (1996).

    Google Scholar 

  154. Heifets S. and Stupakov G., “Beam instability and microbunching due to CSR”, in Proceedings of IEEE Accelerator Conference 2001, Chicago, IL, p. 1856, available at http://epaper.kek.jp/p01/HTML/AUTHORS.HTM.

  155. Borland M., Chae Y. C., Emma P., Lewellen J. W., Bharadwaj V., Fawley W. M., Krejcik P., Limborg C., Milton S. V., Nuhn H.-D., Soliday R. and Woodley M. ”Start-to-end simulation of self-amplified spontaneous emission free electron lasers from the gun through the undulator”, Nucl. Instrum. Methods A, 483 (2002) 268.

    Article  ADS  Google Scholar 

  156. Huang Z., Borland M., Emma P., Wu J., Limborg C., Stupakov G. and Welch J., “Suppression of microbunching instability in the linac coherent light source”, Phys. Rev. Special Topics, Accelerators and Beams, 7 (2004) 074401.

    Article  ADS  Google Scholar 

  157. Cornacchia M., Di mitri S., Penco G. and Zholents A., “Formation of electron bunches for harmonic cascade X-ray free electron lasers”, Phys. Rev. Special Topics, Accelerators and Beams, 9 (2006) 120701.

    Article  ADS  Google Scholar 

  158. LCLS Conceptual Design Report, Chapt. 7.3 (2002), pp. 27–33.

  159. Craievich P. and Di mitri S., Proceedings of the FEL 2005 Conference, SLAC, CA (June 2005), p. 586, available at http://accelconf.web.cern.ch/accelconf/f05/HTML/AUTHOR.HTM

  160. Pozdeyev E. et al., “Multipass beam breakup in energy recovery linacs”, Nucl. Instrum. Methods A, 557 (2006) 176.

    Article  ADS  Google Scholar 

  161. Barry W. Byrd J. Corlett J. N., Li D., Fox J., Minty M. Prabhaker S. and Teytelman D. “Operational experience with the PEP-II transverse coupled-bunch feedback systems”, Proc. IEEE Part. Accel. Conf., 2 (1999) 1207.

    ADS  Google Scholar 

  162. Hara T., Tanaka T., Kitamura H., Bizen T., Marechal X., Seike T., Kohda T. and Matsuura Y., Phys. Rev. Special Topics, Accelerators and Beams, 7 (2004) 050702.

    Article  ADS  Google Scholar 

  163. Pflüger J. and Tischer M., “Undulator systems for the TESLA XFEL”, Nucl. Instrum. Methods A, 483 (2002) 388.

    Article  ADS  Google Scholar 

  164. Halbach K., “Physical and optical properties of rare earth cobalt magnets”, Nucl. Instrum. Methods, 187 (1981) 109.

    Article  ADS  Google Scholar 

  165. See http://www-project.slac.stanford.edu/lc/local/notes/dr/Wiggler/wiggler_rad.html.

  166. Sasaki S., “Analyses for a planar variably-polarizing undulator”, Nucl. Instrum. Methods A, 347 (1994) 83.

    Article  ADS  Google Scholar 

  167. LCLS Conceptual Design Report, Chapt. 8 (2002}), pp. 8–14.

  168. See Chao A. W., “Physics of Collective Beam Instabilities” in High Energy Accelerators, 1993; Henke H. and Napoly O. “Wake Fields between Two Parallel Plates”, CERN/LEP-RF/89-71 CLIC Note 103 (1989); Bane K. L. F. and Stupakov G. “Resistive Wall Wakefield in the LCLS Undulator Beam Pipe”, SLAC-PUB-10707; Bane K. L. F., “The Short Range Resistive Wall Wakefields”, SLAC/AP-87, June 1991. Application to the case of XFEL and LCLS can be found in Dohlus M., Schlarb H., Wanzenberg R., Lorenz R. and Kamps T., “Estimation of longitudinal wakefield effects in the TESLA-TTF FEL undulator beam pipe and diagnostic section”, Techical Report DESY-TESLA-FEL-98-02, Deutsches Elektronen-Synchrotron, Hamburg, Germany (March 1998) and in the LCLS CDR, Chapt. 8, pp. 55-56, respectively.

  169. Craievich P. and Bontoiu C., Longitudinal Resistive Wall Wakefields in the Vacuum Chamber of the FERMI FEL1 Undulator, Internal Note ST/F-TN-06/17, October 2006.

    Google Scholar 

  170. Stupakov G. “Surface Roughness Impedance”, SLAC-PUB-8743, December 2000. See also Stupakov G. Thomson R. E., Walz D. and Carr R., “Effects of beamtube roughness on X-ray free electron laser performance”, Phys. Rev. Special Topics, Accelerators and Beams, 2 (1999) 1. One should note that the quantitative behavior of the roughness wake function can be quite model dependent. For examples see Angelici M., Frezza F., Mostacci A. and Palumbo L., “Wake fields effects due to surface roughness in a circular pipe”, Nucl. Instrum. Methods A, 489 (2002) 10; Ratschow S., Weiland T. and Timm M., “On the mechanism of surface roughness wake field excitation”, Proc. IEEE Part. Accel. Conf., 1 (2001) 167; Hüning M. and Schmüser P., “Experimental investigation of wake fields excited by a rough surface”, Nucl. Instrum. Methods A, 483 (2002) 336. The latter authors find that the wake effects are consistent with simulations in which the rough surface is modeled by a dielectric layer.

    Article  Google Scholar 

  171. Emma P., “Phase Slip in an Undulator with Pole and BPM Errors”, in Proceedings of IEEE Accelerator Conference 2001, Chicago, IL, p. 2742, available at http://epaper.kek.jp/p01/HTML/AUTHORS.HTM

  172. Adolphsen C. E., “Beam Based technique for the SLC Linac”, SLAC-PUB-4902 (1989).

  173. Shintake T., Huke K., Tanaka J., Sato I. and Kumabe I., Jpn. J. Appl. Phys., 22 (1983) 844. Batchelor K., reported an early theoretical study, “Microwave Undulator”, Brookhaven National Laboratory Report-12, (1983). Other early explorations of this concept can be found in Danly B. G. et al., IEEE J. Quantum Electron., QE-23 (1987) 103; Tran T. M., Danly B. G. and Wurtele J. S., IEEE J. Quantum Electron., QE-23 (1987) 1578. These latter papers consider the use of counter-propagating waves.

  174. Seidl M., “Parameter Evaluation for Microwave Undulator Schemes”, DESY report, fel2001-08 (2001).

    Google Scholar 

  175. Pellegrini C., “X-Band Microwave Undulators for Short Wavelength Free-Electron Lasers”, Proceedings of CP807, High Energy Density and High Power RF: 7th Workshop, edited by ABE D. K. and Nusinovich G. S. (AIP, New York) 2006.

  176. See Gea-banacloche J., Moore G. T., Schlicher R. R., ScuLLy M. O. and Walther H., “Soft X-Ray Free-Electron with a Laser Undulator”, IEEE J. Quantum Electron., QE-23 (1987) 1558; Danly B. G., Bekefi G., Davidson R. C., Temkin R. J., Tran T. M. and Wurtele J. S., IEEE J. Quantum Electron., QE-23 (1987) 103. Also, Gallardo J. C., Fernow R. C., Palmer R. and Pellegrini C., IEEE J. Quantum Electron., QE-24 (1988) 1557. Also see Bonifacio R., “Quantum SASE FEL with laser wiggler”, Nucl. Instrum. Methods A, 546 (2005) 634; Bonifacio R., Piovella N., Cola M. M. and Volpe L., “Experimental requirements for X ray compact Free Electron Lasers with a Laser Wiggler”, to be published in Nucl. Instrum. Methods; Serafini L. Rossi A. R., Petrillo V. Maroli C., Baggi A. and Ferrario M. “Parametric optimization of a X-ray FEL based on a Thomson source”, in Proceedings of FEL 2006, BESSY, Berlin, Germany, available at http://www.bessy.de/fel2006/proceedings/HTML/AUTHOR.HTM.

    Article  ADS  Google Scholar 

  177. Zolotorev M. S., “Laser driven attosecond SASE X-ray FEL”, Nucl. Instrum. Methods A, 483 (2002) 445.

    Article  ADS  Google Scholar 

  178. Based on the original development carried out at the MIT by Prof. F. X. Kartner’s group. Kim J. W., Ilday F. O., Kärtner F. X., Mugke O. D., Perrott M. H., Graves W. H., Mongton D. E. and Zwart T. “Large scale timing distribution and RF-synchronization for FEL facilities”, in FEL Conference 2004, Trieste, Italy, 2004, available at http://accelconf.web.cern.ch/AccelConf/f04/; Kim J., Kartner F. X. and Perrott M. H., “Femtosecond synchronization of radio frequency signals with optical pulse trains”, Opt. Lett., 29 (2004) 2076.

  179. Corlett J. N., Doolittle L. Schoenlein R. Staples J. Wilgox R. and Zholents A. “Techniques for synchronization of X-ray pulses to the pump laser in an ultra fast x-ray facility”, Proc. IEEE Part. Accel. Conf., 4 (2003) 2408.

    ADS  Google Scholar 

  180. Steeg B., Juha L., Feldhaus J., Jagobi S., Sobierajski R., Mighaelsen C., Andrejgzuk A. and Krzywinski J., “Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers”, Appl. Phys. Lett., 84 (2004) 657.

    Article  ADS  Google Scholar 

  181. LCLS CDR, Chapt. 9, p. 3.

  182. Tatghyn R., “LCLS Optics: Technological Issues and Scientific Opportunities”, in Proceedings of the Workshop on Scientific Applications of Short Wavelength Coherent Light Sources, SLAC Report 414; SLAC-PUB 6064, March 1993.

  183. Andrejgzuk A. et al., “Investigations of damage thresholds of optical components at the VUV TESLA FEL Phase I”, HASYLAB annual report (2001) http://www-hasylab.desy.de/science/annual_reports/2001_report/index.html.

  184. Dong Y., Sakata H. and Molian P., “Femtosecond pulsed laser ablation of diamond-like carbon films on silicon”, Appl. Surf. Sci., 252 (2005) 352.

    Article  ADS  Google Scholar 

  185. von der linde D. and Sokolowski-tinten K., “The physical mechanisms of short-pulse laser ablation”, Appl. Surf. Sci., 154-155 (2000) 1.

    Article  ADS  Google Scholar 

  186. Jesghke H. et al., Appl. Surf. Sci., 197 (2002) 839.

    Article  ADS  Google Scholar 

  187. Jesghke H. et al., Appl. Surf. Sci., 197-198 (2002) 107.

    Article  ADS  Google Scholar 

  188. Progress in high-power high-repletion rate solid state lasers has been rapid. In 1999, an average power of 22.2 W was the highest ever obtained in ultrashort laser sources. Nabekawa Y. et al., “All-solid-state 5-kHz 0.2-TW Ti:sapphire laser system”, Optic Express, 5 (1999) 318. By 2006, 100 TW 10 Hz lasers have become available commercially as turnkey systems in the price range of ~ $2M. Thales Laser in France offers an ALPHA 10 laser with up to 1PW peak power at 800 nm, 10 Hz repetition rate and pulse duration down to 25 fs. http://thales.nuxit.net/?p=products/alpha10

  189. Collier J L, “The Astra Gemini project - an overview”, www.clf.rl.ac.uk/reports/2004-2005/pdf/94.pdf; Hooker C. J., Collier J. L., Chekhlov O. Clarke R. Divall E., Ertel K., Fell B., Foster P., Hangogk S., Langley A., Neely D., Smith J. and Wyborn B., “The Astra Gemini project - A dual-beam petawatt Ti:Sapphire laser system”, Inertial Fusion Sciences and Applications 2005, Gauthier J.-C. et al., J. Phys. IV France, 133 (2006) 673.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletta, W., Rizzuto, C. & the FERMI@Elettra Collaboration. VUV and X-Ray Free-Electron Lasers: The technology and its scientific promise. Riv. Nuovo Cim. 29, 1–104 (2006). https://doi.org/10.1393/ncr/i2007-10001-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10001-3

Key words

Navigation