Skip to main content
Log in

Si quantum dots for nanoelectronics: From materials to applications

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

This paper reviews the subject of Si quantum dots embedded in dielectric and its application to the realization of non volatile semiconductor memo¬ries. In the first part of the paper various approaches for the analysis of the materials through transmission electron microscopy (TEM) are critically discussed. The ad¬vantages coming from an innovative application of energy filtered TEM are put in clear evidence. The paper then focuses on the synthesis of the materials: two dif¬ferent methodologies for the realization of the dots, both based on chemical vapor deposition are described in detail, and physical models providing some understand¬ing of the observed phenomenology are reported. We then discuss the application of this nanotechnology to the realization of the storage nodes in non volatile semi¬conductor memories. The following sections describe the electrical characteristics found in the test devices and some key aspects are described in terms of quantita¬tive models. The test devices show several performance advantages, indicating that the approach is an excellent candidate for the realization of Flash memories of the nanoelectronic era.

PACS 73.63. Bd - Nanocrystalline materials.

PACS 73.63.Kv - Quantum dots.

PACS 85.30.-z - Semiconductor devices.

PACS 85.35. -p - Nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirby J., Nobel lectures, Physics 1996-2000, edited by Ekspong G. (World Scientific Publishig Co. Singapore) 2002, p. 474.

  2. Dennard R. H. et al, Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions, IEEE Solid J. State Ckt, CS-9 (1974) 256

    Article  ADS  Google Scholar 

  3. Baccarani G., Wordeman M. R. and Dennard R. H., Generalized scaling theory and its application to a 1/4 micrometer MOSFET design, IEEE Trans. Electron Devices, ED-31 (1984) 452–461.

    Article  ADS  Google Scholar 

  4. Sze S. M. (Editor), VLSI Technology, 2nd Edition (McGraw Hill) 1988.

    Google Scholar 

  5. Hori T., Gate Dielectrics and MOS (ULSIs) 1997.

    Book  Google Scholar 

  6. Rimini E., Ion Implantation: Basics to Device Fabrication (Kluwer Academic Publishers, Boston) 1995.

    Book  Google Scholar 

  7. Sze S. M., Physics of Semiconductor Devices, 2nd Edition (Wiley) 1981.

    Google Scholar 

  8. Cappelletti P., Golla C, Olivo P. and Zanoni E., Flash Memories (Kluwer Academic Publishers) 1998.

    Google Scholar 

  9. International Technology Roadmap for Semiconductors (ITRS), 2002 Edition, Process Integration, Devices, and Structures and Emerging Research Devices.

    Google Scholar 

  10. Wade W. and Lammers D., EE Times, July 16 (2001).

    Google Scholar 

  11. Yoshikawa K., Technology Requirements for Next Decade Flash Memories, in Proceedings of the 30th European Solid-State Device Research Conference, Cork Ireland, 11-13, September 2000 (Frontier Group, ESSDERC) 2000, p. 72.

    Google Scholar 

  12. Desalvo B., Lombardo S. (Guest Editors), Proceedings of the Workshop “Non volatile memories with discrete storage nodes”, Special issue of Solid-State Electronics, 48 (2004).

  13. Minami S. et al, “A 3Volt 1Mbit full-featured EEPROM using a highly-reliable MONOS device technology”, IEICE Trans. Electron E, 776C (1994) 1260.

    Google Scholar 

  14. Eetan B. et al, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electron. Dev. Lett, 21 (2000) 543.

    Article  ADS  Google Scholar 

  15. Tiwari S. et al., Volatile and non-volatile memories in silicon with nano-crystal storage, in Proceedings of the IEDM (IEEE, New York) 1995, p. 521.

    Google Scholar 

  16. Gebel T., Rebohle L., Zhao J., Borchert D., FrÖb H., Borany J.V. and Skorupa W., Mater. Res. Soc. Symp. Proc, 638 (2001) F18.1.

    Google Scholar 

  17. Hanafi H. I., Tiwari S. and Khan I., IEEE Trans. Electron. Dev., 43 (1996) 1553.

    Article  ADS  Google Scholar 

  18. De Blauwe J., Ostraat M., Green M. L., Weber G., Sorsch T., Kerber A., Klemens F., Cirelli R., Ferry E., Grazul J. L., Baumann F., Kim Y., Mansfield W., Bude J., Lee J. T. C, Hillenius S. J., Flagan R. C. and Atwater H. A., Proceedings of the IEDM (IEEE, New York) 2000.

    Google Scholar 

  19. Madhukar S., Smith K., Muralidhar R., O’Meara D., Sadd M., Nguyen B.-Y., White B. and Jones B., Mater. Res. Soc. Symp. Proc, 638 (2001) F5.2.1.

    Article  Google Scholar 

  20. Lombardo S. and Campisano S. U., Electrical and Optical Properties of semi-insulating polycrystalline Si thin finis: the role of microstructure and doping, Mater. Sci. Eng. Rep. R, 17 (1996) 281.

    Article  Google Scholar 

  21. Iacona F., Franzo G. and Spinella C, J. Appl. Phys., 87 (2000) 1295.

    Article  ADS  Google Scholar 

  22. Crupi L, Lombardo S., Spinella C, Buongiorno C, Liao Y., Gerardi C, Fazio B., Vulpio M. and Privitera S., J. Appl. Phys., 89 (2001) 5552.

    Article  ADS  Google Scholar 

  23. Gourbilleau F., Portier X., Ternon C, Voivenel P., Madelon R. and Rizk R., Appl. Phys. Lett, 78 (2001) 3058.

    Article  ADS  Google Scholar 

  24. Inokuma T., Wakayama Y., Muramoto T., Aoki R., Kurata Y. and Hasegawa S., J. Appl. Phys., 83 (1998) 2228.

    Article  ADS  Google Scholar 

  25. Zhu J. G., White C. W., Budai J. D., Withrow S. P. and Y. Chen, J. Appl. Phys., 78 (1995) 4386.

    Article  ADS  Google Scholar 

  26. Shimizu-Iwayama T., Fujita K., Nakao S., Saitoh K., Fujita T. and Itoh N., J. Appl. Phys., 75 (1994) 7779.

    Article  Google Scholar 

  27. Nicotra G., Lombardo S., Spinella C., Ammendola G., Gerardi C. and Depuro C., Appl. Surf. Sci., 205 (2003) 304.

    Article  ADS  Google Scholar 

  28. Iacona F., Bongiorno C., Spinella C., Boninelli S. and Priolo F., J. Appl. Phys., 95 (2004) 3723.

    Article  ADS  Google Scholar 

  29. Spinella C., Bongiorno C., Nicotra G., Rimini E., MuscarÀ A. and Coffa S., Appl. Phys. Lett, 87 (2005) 4102.

    Article  Google Scholar 

  30. Zacharias M., Blasing J., Veit P., Tsybeskov L., Hirshman K. and Fauchet P. M., Appl. Phys. Lett., 74 (1999) 2614.

    Article  ADS  Google Scholar 

  31. Pacifici D., Moreira E. C, Franzo G., Martorino V., Priolo F. and Icona F., Phys. Rev. B, 65 (2002) 144109.

    Article  ADS  Google Scholar 

  32. Krivanek O. L., Kundmann M., and Bourrat X., Mat. Res. Soc. Symp. Proc., 332 (1994) 341.

    Article  Google Scholar 

  33. BarrerÀ R. G. and Fuchs R., Phys. Rev. B, 52 (1995) 3256.

    Article  ADS  Google Scholar 

  34. Schmeitz M., J. Phys. C, 14 (1981) 1203.

    Article  ADS  Google Scholar 

  35. Egerton R. F., in Electron Energy-Loss Spectroscopy in the Electron Microscopy, 2nd edition (Plenum Press, New York) 1996.

    Book  Google Scholar 

  36. Nicotra G., Puglisi R. A., Lombardo S., Spinella C, Vulpio M., Ammendola G., Bileci M. and Gerardi C, Nucleation kinetics of Si quantum dots on SÌO2, J App. Phys., 95 (2004) 2049.

    Article  ADS  Google Scholar 

  37. Nicotra G., Lombardo S., Spinella C, Ammendola G., Gerardi C. and Demuro C, Appl. Surf. Sci., 205 (2003) 304.

    Article  ADS  Google Scholar 

  38. Schneidman V. A., Sov. Phys. Technol. Phys., 33 (1988) 1338.

    Google Scholar 

  39. Baron T. et al, J. Crystal Growth, 209 (2000) 1004.

    Article  ADS  Google Scholar 

  40. Mazen F. et al., Influence of the Chemical Properties of the Substrate on Silicon Quantum Dot Nucleation, J. Electrochem. Society, 150 (2003) G203–G208.

    Article  Google Scholar 

  41. Puglisi R. A., Nicotra G., Lombardo S., Spinella C, Ammendolai G., Bileci M. and Gerardi C, Exclusion zone surrounding silicon nanoclusters formed by rapid thermal chemical vapour deposition on SÌO2, Surface Sci., 550 (2004) 119.

    Article  ADS  Google Scholar 

  42. Desalvo B. et al, IEEE Trans. Electron Devices, 48 (2001) 1789.

    Article  ADS  Google Scholar 

  43. Gerardi C, Ammendola G., Melanotte M., Lombardo S., I. CRUPI and Rimini E., Proc. ESSDERG, (2002) 475.

    Google Scholar 

  44. Lombardo S., Gerardi C, Corso D., Ammendola G., I. Crupi and Melanotte M.„ Proceedings of IEEE-NVSMW, (2003) 105.

    Google Scholar 

  45. De Salvo B., Gerardi C, Lombardo S., Baron T., Perniola L., Mariolle D., Mur P., Toffoli A., Gely M., Semeria M. N., Deleonibus S., Ammendola G., Ancarani V., Melanotte M., Bez R., Baldi L., Corso D., Crupi I., Puglisi R. A., Nicotra G., Rimini E., Mazen F., Ghibaudo G., Pananakakis G., Monzio compagnoni C, Ielmini D., Lacaita A., Spinelli A., Wan Y. M. and Van Der Jeugd K., HOW far will Silicon nanocrystals push the scaling limits of NVMs technologies?, IEDM Tech. Dig., (2003).

    Google Scholar 

  46. Lombardo S., Gerardi C, Corso D., Ammendola G., I. Crupi and Melanotte M., Proc. ESSDERG 2003.

    Google Scholar 

  47. Spitale E., Corso D., Crupi I., Nicotra G., Lombardo S., Deleruyelle D., Gely M., Buffet N., De Salvo B. and Gerardi C, Effect of high-k materials in the control dielectric stack of nanocrystal memories, to be published in Proc. ESSDERC 2004

    Google Scholar 

  48. Lombardo S., Puglisi R. A., CRupi L, Corso D., Nicotra G., Perniola L., De Salvo B. and Gerardi C, Distribution of the Threshold Voltage Window in Nanocrystal Memories with Si Dots Formed by Chemical Vapor Deposition: Effect of Partial Self-Ordering, Proc. IEEE-NVSMW 200Jh.

  49. Strukov D. B. and Likharev K. K., Prospects for terabit-scale nanoelectronic memories, Nanotechnology, 16 (2005) 137.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardo, S., Spinella, C. & Rimini, E. Si quantum dots for nanoelectronics: From materials to applications. Riv. Nuovo Cim. 28, 1–31 (2005). https://doi.org/10.1393/ncr/i2006-10002-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2006-10002-8

Navigation