Skip to main content

Advertisement

Log in

The development of nonlinear science

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Research activities in nonlinear science over the past three centuries are reviewed, paying particular attention to the explosive growth of interest in chaos, solitons, and reaction-diffusion phenomena that occurred during the 1970s and considering whether this explosion was an example of a “scientific revolution” or Gestalt-like “paradigm shift” as proposed by Thomas Kuhn in 1962. The broad structure of modern nonlinear science is sketched and details of developments in several areas of nonlinear research are presented, including cosmology, theories of matter, quantum theory, chemistry and biochemistry, solid-state physics, electronics, optics, hydrodynamics, geophysics, economics, biophysics and neuroscience. It is concluded that the emergence of modern nonlinear science as a collective interdisciplinary activity was a Kuhnian paradigm shift which has emerged from diverse areas of science in response to the steady growth of computing power over the past four decades and the accumulation of knowledge about nonlinear methods, which eventually broke through the barriers of balkanization. Implications of these perspectives for twentyfirst-century research in biophysics and in neuroscience are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J. and Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, (Cambridge University Press, New York) 1991.

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H.: The initial value problem for the sine-Gordon equation, Phys.R ev.L ett., 30 (1973) 1262–1264.

    Article  ADS  Google Scholar 

  3. Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H.: The inverse scattering transform Fourier analysis for nonlinear problems, Stud.Appl.Math., 53 (1974) 294–315.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ablowitz, M.J. and Ladik, J.F.: A nonlinear difference scheme and inverse scattering, Stud.Appl.Math., 55 (1976) 213–229.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ablowitz, M.J. and Segur, H.: Solitons and the Inverse Scattering Transform, (SIAM, Philadelphia) 1981.

    Book  MATH  Google Scholar 

  6. Adrian, E.D.: The all-or-none principle in nerve, J.Physiol.(L ondon), 47 (1914) 460–474.

    Article  Google Scholar 

  7. Aigner, A.A.: Navier-Stokes equation, (in [469]) 2005.

    Google Scholar 

  8. Aigner, A.A. and Fraedrich, K.: Atmospheric and ocean sciences, (in [469]) 2005.

    Google Scholar 

  9. Airy, G.B.: Tides and waves, Encyclopedia Metropolitana 3 (1841).

  10. Alfvćen, H.: Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942) 405–406

    Article  ADS  Google Scholar 

  11. Allen, F. et al.: Blue gene: A vision for protein science using a petaflop supercomputer, IBM Systems Journal, 40 (2001) 310–327.

    Article  Google Scholar 

  12. Anderson, P.B., Emmeche, C., Finnemann, N.O. and Christiansen, P.V.: Downward Causation: Minds, Bodies and Matter, (Aarhus University Press, Aarhus, Denmark) 2000.

    Google Scholar 

  13. Anderson, P.W.: More is different: Broken symmetry and the nature of the hierarchical structure of science, Science, 177 (1972) 393–396.

    Article  ADS  Google Scholar 

  14. Anderson, P.W., Arrow, K.J. and Pines, D. (editors): The Economy as a Complex Evolving System, (Addison-Wesley, Redwood City, California) 1988.

    MATH  Google Scholar 

  15. Andronov, A.A., Vitt, A.A. and Khaykin, S.E.: Theory of Oscillators, (Pergamon Press, New York) 1966. (The original Russian edition was first published in 1937.)

    Google Scholar 

  16. Aristotle: The Physics, (translated by PH Wicksteed and FM Cornford), (Harvard University Press, Cambridge, and William Heinemann Ltd, London) 1953.

    MATH  Google Scholar 

  17. Arnol’d, V.I.: Ordinary Differential Equations, third edition, (Springer-Verlag, Berlin) 1992.

    MATH  Google Scholar 

  18. Athorne, A.: Darboux transformation, (in [469]) 2005.

    Google Scholar 

  19. Aydon, C.: Charles Darwin: The Naturalist Who Started a Scientific Revolution, (Carroll & Graf, New York) 2002.

    Google Scholar 

  20. Baas, N.A.: Emergence, hierarchies, and hyperstructures. In Artificial Life III, edited by Cg Langton, (Addison-Wesley, Reading) 1994.

    Google Scholar 

  21. cklund, A.V.: On ytor med konstant negative krökning, Lunds Universitets Arsskrift, 19 (1883) 1–48.

    Google Scholar 

  22. Baker, G.L. and Gollub, J.P.: Chaotic Dynamics, Cambridge University Press, Cambridge) 1996.

    Book  MATH  Google Scholar 

  23. Ball, R.: Fairy rings of mushrooms, (in [469]) 2005.

    Google Scholar 

  24. Ball, R.: Kolmogorov cascade, (in [469]) 2005.

    Google Scholar 

  25. Ball, R. and Akhmediev, N.A.: Nonlinear Dynamics: From Lasers to Butterflies, (World Scientific, Singapore) 2003.

    Book  MATH  Google Scholar 

  26. Banerjee, A. and Sobell, H.M.: Presence of nonlinear excitations in DNA structure and their relationship to DNA premelting and to drug intercalation. Journal of Biomolecular Structure and Dynamics, 1 (1983) 253–262.

    Article  Google Scholar 

  27. Barone, A.: Flux-flow effects in Josephson tunnel junctions, J.Appl.Phys., 42 (1971) 2747–2751.

    Article  ADS  Google Scholar 

  28. Barone, A.: The Josephson effect-encounters in macroscopic quantum phenomena, Conference Proceedings Vol. 79 One hundred years of h, edited by E. Beltrametti, G. Giuliani, A. Rimini and N. Robotti, (SIF, Bologna) 2002) 95–105.

    Google Scholar 

  29. Barone, A.: The strong impact of the weak superconductivity, Journal of Superconductivity, 17(5) (2004) 585–592.

    Article  ADS  Google Scholar 

  30. Barone, A., Esposito, F., Magee, C.J. and Scott, A.C.: Theory and applications of the sine-Gordon Equation, Rivista del Nuovo Cimento, 1 (1971) 227–267.

    Article  ADS  Google Scholar 

  31. Barone, A. and Paternó, G.: Physics and Applications of the Josephson Effect, (Wiley, New York) 1982.

    Book  Google Scholar 

  32. Barrow-Green, J.: Poincaré and the Three-Body Problem, (Am. Math. Soc., Providence, R.I.) 1996.

    Book  MATH  Google Scholar 

  33. Baxter, R.J.: Exactly Solvable Models in Statistical Mechanics, (Academic Press, London) 1982.

    MATH  Google Scholar 

  34. Bazin, M.H.: Rapport aux remous et la propagation des ondes, Report to the Academy of Sciences, Paris, 1865.

    Google Scholar 

  35. Bean, C.P. and Deblois, R.W.: Ferromagnetic domain wall as a pseudorelativistic entity, Bull.A m.Phys.So c., 4 (1959) 53.

    Google Scholar 

  36. Beck, C.: Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields, (World Scientific, Singapore) 2002.

    Book  MATH  Google Scholar 

  37. Beck, C.: String theory, (in [469]) 2005.

    Google Scholar 

  38. Benjamin, T.B. and Feir, J.E.: The disintegration of wave trains in deep water, J. Fluid Mech., 27 (1967) 417–430.

    Article  ADS  MATH  Google Scholar 

  39. Benney, D.J. and Newell, A.C.: The propagation of nonlinear wave envelopes, J. Math.Phys., 46 (1967) 133–139.

    Article  MathSciNet  MATH  Google Scholar 

  40. Bernstein, J.: Über den zeitlichen Verlauf der negativen Schwankung des Nervenstroms, Arch.ges.Physiol., 1 (1968) 173–207.

    Article  Google Scholar 

  41. Bernstein, J.: Untersuchungen zur Thermodynamik der bioelektrischen Ströme, Arch. ges.Physiol., 92 (1902) 521–562.

    Article  Google Scholar 

  42. Bianchi, L.: Ricerche sulle superficie a curvatura constante e sulle elicoidi, Annali di Scuola Normale Sup.Pisa, 1 (1879) 285–340.

    Google Scholar 

  43. Bianchi, L.: Sulle transformatione di Bäcklund per le superficie pseudosferiche, Rendiconti Accademia Nazionale dei Lincei, 5 (1892) 3–12.

    MATH  Google Scholar 

  44. Binczak, S.: Myelinated nerves, (in [469]) 2005.

    Google Scholar 

  45. Birge, R.T. and Sponer, H.: The heat of dislocation of non-polar molecules, Phys. Rev., 28 (1926) 259–283.

    Article  ADS  MATH  Google Scholar 

  46. Birkhoff, G.D.: Dynamical Systems, (American Mathematical Society, Providence, R.I.) 1926.

    Google Scholar 

  47. Bissell, C.C.: A.A. Andronov and the development of Soviet control engineering, IEEE Control Systems Magazine, 18(1) (1998) 56–62.

    Article  Google Scholar 

  48. Bloembergen, N.: Nonlinear Optics, (World Scientific, Singapore) 1965.

    MATH  Google Scholar 

  49. Boardman, A.: Polaritons, (in [469]) 2005.

    Google Scholar 

  50. Bode, H.W.: Network Analysis and Feedback Amplifier Design, (Van Nostrand, New York) 1950.

    Google Scholar 

  51. Bode, M.F. and Evans, A.: Classical Novae, (Wiley, New York) 1989.

    Google Scholar 

  52. Bogoliubov, N.N. and Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations, (Gordon and Breach, New York) 1961.

    Google Scholar 

  53. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables, Phys.R ev., 85 (1953) 166–193.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Bohm, D.: Proof that probability density approaches ψ2 in causal interpretation of quantum theory, Phys.R ev., 89 (1953) 458–466.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Bollinger, J.J., Heinzen, D.J., Itano, W.M., Gilbert, S.L. and Wineland, D.J.: Test of the linearity of quantum mechanics by rf spectroscopy of the 9Be+ ground state, Phys.R ev.L ett., 63 (1989) 1031–1034.

    Article  ADS  Google Scholar 

  56. Bona, J.L., Pritchard, W.G. and Scott, L.R.: An evaluation of a model equation for water waves, Phil.T rans.R oy.So c.(L ondon), 302 (1981) 457–510.

    ADS  MathSciNet  MATH  Google Scholar 

  57. Bonnet, O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée, Jour.de l’École Imperial Polytechnique, 25 (1867) 1–151.

    Google Scholar 

  58. Borckmans, P. and Dewel, G.: Turing patterns, (in [469]) 2005.

    Google Scholar 

  59. Born, M.: Der Impulse-Energie-Satz in der Elektrodynamik von Gustav Mie, Nach.von der Gesell.der Wissen.(Göttingen), Math. Physikalische Kl. (1914) 23–36.

    Google Scholar 

  60. Born, M.: Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen, (Springer-Verlag, Berlin) 1920.

    Book  MATH  Google Scholar 

  61. Born, M.: Physical aspects of quantum mechanics, Nature, 119 (1927) 354–357.

    Article  ADS  MATH  Google Scholar 

  62. Born, M. and Oppenheimer, J.R.: Zur Quantentheorie der Molekeln, Ann.der Physik, 84 (1927) 457–484.

    Article  ADS  MATH  Google Scholar 

  63. Born, M. and Infeld, L.: Foundations of a new field theory, Proc.R oy.So c.L ondon A, 144 (1934) 425–451.

    ADS  MATH  Google Scholar 

  64. Bour, E.: Théorie de la déformation des surfaces, Jour.de l’ École Imperial Polytechnique, 19 (1862) 1–48.

    Google Scholar 

  65. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangular horizontal, en communiquant au liquid contenu dans ce canal des vitesses sensiblement pareilles de la surface eau fond. J.Math.Pur es Appl., 17 (1872) 55–108.

    MathSciNet  MATH  Google Scholar 

  66. Bray, W.C.: A periodic reaction in homogeneous solution and its relation to catalysis, J.A m.Chem.So c., 43 (1921) 1262–1267.

    Article  Google Scholar 

  67. Briggs, K.: A precise calculation of the Feigenbaum numbers, Mathematics of Computation, 57 (1991) 435–439.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Brittain, J.E.: Harold S.Black and the negative feedback amplifier, Proc.IEEE, 85 (1997) 1335–1336.

    Google Scholar 

  69. Brown, J.D., Henneaux, M. and Teitelboim, C.: Black holes in two space-time dimensions, Phys.R ev.D, 33 (1986) 319–323.

    Article  ADS  Google Scholar 

  70. Browne, J.: Charles Darwin: The Power of Place, (Random House, New York) 2002.

    Google Scholar 

  71. Bullough, R.: The wave “par excellence,” the solitary, progressive great wave of equilibrium of the fluid - an early history of the solitary wave. In Solitons, edited by M. Lakshmanan, (Springer-Verlag, New York) 1988.

    MATH  Google Scholar 

  72. Bullough, R.: Sine-Gordon equation, (in [469]) 2005.

    Google Scholar 

  73. Bunge, M.: Causality and Modern Science, third edition, (Dover, New York) 1979.

    Google Scholar 

  74. Burgers, J.: A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1 (1948) 171–199.

    Article  MathSciNet  Google Scholar 

  75. Busse, F.H.: Visualizing the dynamics of the onset of turbulence, Science, 305 (2004) 1574–1575.

    Article  Google Scholar 

  76. Busse, F.H.: Fluid dynamics, (in [469]) 2005.

    Google Scholar 

  77. Busse, F.H.: Magnetohydrodynamics, (in [469]) 2005.

    Google Scholar 

  78. Calini, A.M.: Mel’nikov method, (in [469]) 2005.

    Google Scholar 

  79. Calogero, F. and Degasperis, A.: The Spectral Transform and Solitons, (North- Holland, Amsterdam) 1982.

    MATH  Google Scholar 

  80. Campbell, D.K., Flach, S. and Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness, Physics Today, January 2004, 43–49.

    Google Scholar 

  81. Campbell, D.K., Schonfeld, J.S. and Wingate, C.A.: Resonance structure in kink-antikink interactions in φ4 theory, Physica D, 9 (1983) 132.

    Article  Google Scholar 

  82. Careri, G., Buontempo, U., Galluzzi, F., Scott, A.C., Gratton, E. and Shyamsunder, E.: Spectroscopic evidence for Davydov-like solitons in acetanilide, Phys.R ev.B, 30 (1984) 4689–4702.

    Article  ADS  Google Scholar 

  83. Carroll, S.M.: Sapcetime and Geometry: An Introduction to General Relativity, (Addison-Wesley, Reading, Massachusetts) 2003.

    Google Scholar 

  84. Cartwright, M.L. and Littlewood, J.E.: On nonlinear differential equations of the second order. I. The equation y+k(1−y2) ? y+y = bλk cos(λt+ a), k large, J.L ondon Math.So c., 20 (1945) 180–189.

    Article  MATH  Google Scholar 

  85. Casati, G. and Chirikov, B.V.: Quantum Chaos, (Cambridge University Press, Cambridge) 1995.

    Book  MATH  Google Scholar 

  86. Casten, R.G., Cohen, H. and Lagerstrom, P.A.: Perturbation analysis of an approximation to Hodgkin-Huxley theory, Quat.Appl.Math., 32 (1975) 356–402.

    MATH  Google Scholar 

  87. Castets, V., Dulos, E., Boissonade, J. and De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev.L ett., 64 (1990) 2953–2956.

    Article  ADS  Google Scholar 

  88. Caudry, P.J., Eilbeck, J.C. and Gibbon, J.D.: The sine-Gordon equation as a model field theory, Nuovo Cimento B, 25 (1975) 497–512.

    Article  ADS  Google Scholar 

  89. Chernitskii, A.A.: Born-Infeld equations, (in [469]) 2005.

    Google Scholar 

  90. Chirikov, B.V.: A universal instability of many dimensional oscillator systems, Physics Reports, 52 (1979) 263–379.

    Article  ADS  MathSciNet  Google Scholar 

  91. Chirikov, B.V. and Vecheslavov, V.V.: Chaotic dynamics of comet Halley, Astronomy and Astrophysics, 221 (1989) 146–154.

    ADS  Google Scholar 

  92. Choudury, S.R.: Lorenz equations, (in [469]) 2005.

    Google Scholar 

  93. Christ, N.H. and Lee, T.D.: Quantum expansion of soliton solutions, Phys.R ev.D, 12 (1975) 2330–2336.

    Article  MathSciNet  Google Scholar 

  94. Christiansen, P.L., Gaididei, Yu.B., Johansson, M., Rasmussen, K.O., Mezentsev, V.K. and Rasmussen, J.J.: Solitary excitations in discrete twodimensional nonlinear Schrödinger models with dispersive dipole-dipole interactions, Phys.R ev.B, 57 (1998) 11303–11308.

    Article  ADS  Google Scholar 

  95. Chua, L.O., Desoer, C.A. and Kuh, E.S.: Linear and Nonlinear Circuits, (McGraw- Hill, New York) 1987.

    MATH  Google Scholar 

  96. Chung, S.H., Raymond, S.A. and Letvin, J.Y.: Multiple meaning in single visual units, Brain Behav.Evol., 3 (1970) 72–101.

    Article  Google Scholar 

  97. Cole, K.S. and Curtis, H.J.: Electrical impedance of a nerve during activity, Nature, 142 (1938) 209.

    Article  ADS  Google Scholar 

  98. Corry, L.: From Mie’s electromagnetic theory of matter to Hilbert’s unified foundations of physics, Stud.Hist.Phil.Mo d.Phys., 30 (1999) 159–183.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Corry, L., Renn, J. and Stachel, J.: Belated decision in the Hilbert-Einstein priority dispute, Science, 278 (1997) 1270–1273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Cottingham, W.N. and Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, (Cambridge University Press, Cambridge) 1998.

    MATH  Google Scholar 

  101. Craik, A.D.D.: The origins of water wave theory, Annu.R ev.Fluid Mech., 36 (2004) 1–28.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Crane, H.D.: Neuristor - a novel device and system concept, Proc.IRE, 50 (1962) 2048–2060.

    Article  Google Scholar 

  103. Cruzeiro-Hansson, L., Feddersen, H., Flesch, R., Christiansen, P.L., Salerno, M. and Scott, A.C.: Classical and quantum analysis of chaos in the discrete self-trapping equation, Phys.R ev.B, 42 (1990) 522–526.

    Article  ADS  Google Scholar 

  104. Cruzeiro-Hansson, L. and Takeno, S.: Davydov model: the quantum, mixed quantum/classical and full classical systems, Phys.R ev.E, 56 (1997) 894–906.

    Article  ADS  Google Scholar 

  105. Cvitanovi Ć, P.: Universality in Chaos, (Adam Hilger, Bristol) 1989.

    MATH  Google Scholar 

  106. Dai, H-H and Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, Proc.R oy.So c.(L ondon) A, 456 (2000) 331–363.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Darboux, G.: Sur une proposition relative aux équations linéaires, C.R. Acad. Sci. Paris, 94 (1882) 1343; 1456-1459.

    MATH  Google Scholar 

  108. Darrigol, O.: The spirited horse, the engineer, and the mathematician, Arch.H ist. Exact Sci., 58 (2003) 21–95.

    Article  MATH  Google Scholar 

  109. Darwin, C.R.: The Origin of Species, (Random House, New York) 1979. (First published in 1859.)

    Google Scholar 

  110. Darwin, C.R.: The Autobiography of Charles Darwin, (Barnes & Noble, New York) 2005. (First published in 1887.)

    Google Scholar 

  111. Dashen, R.F., Hasslacher, B. and Neveu, A.: Particle spectrum in model field theories from semiclassical functional integral techniques, Phys.R ev.D, 11 (1975) 3424–3450.

    Article  ADS  Google Scholar 

  112. Dauxois, T. and Peyrard, M.: A nonlinear model for DNA melting. In Nonlinear Excitations in Biomolecules, edited by M. Peyrard, (Springer-Verlag, Berlin) 1995. 127–136.

    Chapter  Google Scholar 

  113. Davis, B.: Exploring Chaos, (Perseus Books, Reading, Massachusetts) 1999.

    Google Scholar 

  114. Davis, W.C.: Explosions, (in [469]) 2005.

    Google Scholar 

  115. Davydov, A.S.: The theory of contraction of proteins under their excitation, J.The oret. Biol., 38 (1973) 559–569.

    Google Scholar 

  116. Davydov, A.S.: Solitons in Molecular Systems, second edition, (Reidel, Dordrecht) 1991.

    Book  MATH  Google Scholar 

  117. Day, R.H.: Complex Economic Systems, (MIT Press, Cambridge, Mass) 1996.

    Google Scholar 

  118. Deadwyler, S.A., Burn, T. and Hampson, R.E.: Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats, J.Neur osci., 16 (1996) 354–372.

    Article  Google Scholar 

  119. De Broglie, L.: Nonlinear Wave Mechanics, (Elsevier, Amsterdam) 1960.

    MATH  Google Scholar 

  120. De Broglie, L.: Introduction to the Vigier Theory of Elementary Particles, (Elsevier, Amsterdam) 1963.

    Google Scholar 

  121. De Bruyn, J.R.: Phase transitions, (in [469]) 2005.

    Google Scholar 

  122. Deconinck, B.: Kadomtsev-Petviashvili equation, (in [469]) 2005.

    Google Scholar 

  123. Degallaix, J. and Blair, D.: Gravitational waves, (in [469]) 2005.

    Google Scholar 

  124. Degennes, P.G.: Superconductivity of Metals and Alloys, (Perseus Books, New York) 1999.

    Google Scholar 

  125. Derrick, G.H.: Comments on nonlinear equations as models for elementary particles, J.Math.Phys., 5 (1964) 1252–1254.

    Article  ADS  MathSciNet  Google Scholar 

  126. Deryabin, M.V. and Hjorth, P.G.: Kolmogorov-Arnol’d-Moser theorem, (in [469]) 2005.

    Google Scholar 

  127. Diacu, F.: The solution of the n-body problem, Math.Intel ligencer, 18(3) (1996) 66–70.

    Article  MathSciNet  MATH  Google Scholar 

  128. Diacu, F.: Celestial mechanics, (in [469]) 2005.

    Google Scholar 

  129. Diacu, F. and Holmes, P.: Celestial Encounters: The Origins of Chaos and Stability, (Princeton University Press, Princeton) 1996.

    MATH  Google Scholar 

  130. Dirac, P.A.M.: Quantum mechanics of many electron systems, Proc.Ro yal Soc. (London) A, 126 (1929) 714–733.

    ADS  MATH  Google Scholar 

  131. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D. and Morris, H.C.: Solitons and Nonlinear Wave Equations, (Academic Press, London) 1982.

    MATH  Google Scholar 

  132. Dorignac, J., Eilbeck, J.C., Salerno, M. and Scott, A.C.: Quantum signatures of breather-breather interactions, Phys.R ev.L ett., 93 (2004) 025504–1–4.

    Article  ADS  Google Scholar 

  133. Döring, W.: Über die Trägheit der Wände zwischen weisschen Bezirken, Zeit. Naturforsch., 31 (1948) 373–379.

    Article  ADS  MATH  Google Scholar 

  134. Drazin, P.G. and Johnson, R.S.: Solitons, An Introduction, (Cambridge University Press, Cambridge) 1989.

    Book  MATH  Google Scholar 

  135. Dunajski, M.: A nonlinear graviton from the sine-Gordon equation, Twistor Newsletter, 40 (1996) 43–45.

    Google Scholar 

  136. Dunajski, M., Mason, L.J. and woodhouse, N.M.J.: From 2D integrable systems to self-dual gravity, J.Phys.A: Math.Gen., 31 (1998) 6019–6028.

    Article  ADS  MATH  Google Scholar 

  137. Dupuis, G. and Berland, N.: Belousov-Zhabotinsky reaction, (in [469]) 2005.

    Google Scholar 

  138. Dysthe, K.B., Trulsen, K. Krogstad, H.E. and Socquet-Juglard, H.: Evolution of a narrow band spectrum of random surface gravity waves, Jour.Fluid Mech., 478 (2003) 1–10.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. Ebraheem, H.K., Shohet, J.L. and Scott, A.C.: Mode locking in reversed field pinch experiments, Phys.R ev.L ett., 88 (2002) 067403–1–4.

    ADS  Google Scholar 

  140. Eckberg, Ö., Wallén, P., Lansner, A., Travén, H., Brodin, L. and Grillner, S.: A computer based model for realistic simulations of neural networks, I: The single neuron and synaptic interaction, Biol.Cyb ern., 65 (1991) 81–90.

    Article  Google Scholar 

  141. Eckhardt, B.: Quantum mechanics of classically non-integrable systems, Physics Reports, 163 (1988) 205–297.

    Article  ADS  MathSciNet  Google Scholar 

  142. Eckhardt, B.: Solar system, (in [469]) 2005.

    Google Scholar 

  143. Eckhardt, B.: Quantum chaos, (in [469]) 2005.

    Google Scholar 

  144. Edler, J. and Hamm, P.: Self-trapping of the amide-I band in a peptide model crystal, Jour.of Chem.Phys., 117 (2002) 2415–2424.

    Article  ADS  Google Scholar 

  145. Edler, J., Hamm, P. and Scott, A.C.: Femtosecond study of self-trapped excitons in crystalline acetanilide, Phys.R ev.L ett., 88 (2002) 067403–1–4.

    Article  ADS  Google Scholar 

  146. Eigen, M. and Schuster, P.: The Hypercycle: A Principle of Natural Self- Organization, (Springer-Verlag, Berlin) 1979.

    Book  Google Scholar 

  147. Eilbeck, J.C., Lomdahl, P.S. and Newell, A.C.: Chaos in the inhomogeniously driven sine-Gordon equation, Phys.L ett.A, 87 (1981) 1–4.

    Article  ADS  Google Scholar 

  148. Einstein, A.: Zur elektrodynamik bewegter Körper, Ann.der Physik, 17 (1905) 891–921.

    Article  ADS  MATH  Google Scholar 

  149. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie, Ann.der Physik, 49 (1916) 769–822.

    Article  ADS  MATH  Google Scholar 

  150. Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein, Verh.Deutsch.Phys. Ges., 19 (1917) 82–92.

    Google Scholar 

  151. Einstein, A.: Zur Quantentheorie der Strahlung, Physik.Zeit., 18 (1917) 121–128.

    Google Scholar 

  152. Einstein, A.: Ideas and Opinions, (Crown, New York) 1954.

    Google Scholar 

  153. Ellis, J.W.: Molecular absorption spectra of liquids below 3μ, Trans.F araday Soc., 25 (1929) 888–897.

    Article  Google Scholar 

  154. Elsaesser, T., Mukamel, S., Murnanae, M.M. and Scherer, N.F. (editors): Ultrafast Phenomena XII, (Springer-Verlag, Berlin) 2000.

    Google Scholar 

  155. Elsasser, W.M.: Reflections on a Theory of Organisms: Holism in Biology, (Johns Hopkins University Press, Baltimore) 1998. (First published in 1987.)

    Google Scholar 

  156. Emmeche, C., Koppe, S. and Stjernfelt, F.: Levels, emergence, and three versions of downward causation. In [12].

    Google Scholar 

  157. Encyclopedia Britannica, 25 (1911) 460.

  158. Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A. and Litwin, A.: Nature of the open state in long polynucleotide double helices: Possibility of soliton excitations, Proc.Natl.A cad.Sci.USA, 77 (1980) 7222–7226.

    Article  ADS  Google Scholar 

  159. Enneper, A.: Analytisch-geometrische Untersuchungen, Nach.K.Ges.Wiss. Göttingen, (1868) 252.

    Google Scholar 

  160. Enz, U.: Discrete mass, elementary length, and a topological invariant as a consequence of a relativistic invariant variation principle, Phys.R ev., 131 (1963) 1392–1394.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. Enz, U.: Die Dynamik der blochschen Wand, Helv.Phys.A cta, 37 (1964) 245–251.

    Google Scholar 

  162. Evans, J.W.: Nerve axon equations, Indiana Univ.Math.J., 21 (1972) 877-885; 22 (1972) 75-90; 22 (1972) 577-593; 24 (1975) 1169–1190.

    Article  MATH  Google Scholar 

  163. Faddeev, L.D.: Quantum completely integrable models in field theory, Soviet Science Rev.of Math.and Phys.C, 1 (1981) 107–155.

    MathSciNet  MATH  Google Scholar 

  164. Faddeev, L.D. and Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons, (Springer-Verlag, Berlin) 1987.

    Book  MATH  Google Scholar 

  165. Faraday, M.: Faraday’s Chemical History of a Candle, (Chicago Review Press, Chicago) 1988.

    Google Scholar 

  166. Feddersen, H.: Numerical calculations of solitary waves in Davydov’s equations, Phys. Scr., 47 (1993) 481–483.

    Article  ADS  Google Scholar 

  167. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations, J.Statistic al Phys., 19 (1978) 25–52.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  168. Feigenbaum, M.: Private communication, May 2005.

    Google Scholar 

  169. Fergason, J.L. and Brown, G.H.: Liquid crystals and living systems, J.A m.Oil Chem.So c., 45 (1968) 120–127.

    Article  Google Scholar 

  170. Fermi, E., Pasta, J.R. and Ulam, S.M.: Studies of nonlinear problems, Los Alamos Scientific Laboratory Report No. LA1940 (1955). Reprinted in reference [382].

    Book  Google Scholar 

  171. Filippov, A.T.: The Versatile Soliton, (Birkhäuser, Boston) 2000.

    MATH  Google Scholar 

  172. Finkelstein, R., Lelevier, R. and Ruderman, M.: Nonlinear spinor fields, Phys. Rev., 83 (1951) 326–332.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. Fisher, R.A.: The wave of advance of advantagenous genes, Ann.Eugen., (now Ann. Hum.Gen.) 7 (1937) 355–369.

    Article  Google Scholar 

  174. Flaschka, H.: Toda lattice, (in [469]) 2005.

    MATH  Google Scholar 

  175. Floria, L.M. and Martinez, P.J.: Frenkel-Kontorova model, (in [469]) 2005.

    Book  MATH  Google Scholar 

  176. Franken, P.A., Hill, A.E., Peters, C.W. and Weinreich, G.: Generation of optical harmonics, Phys.R ev.L ett., 7 (1961) 118–119.

    Article  ADS  Google Scholar 

  177. Franklin, W.S.: Book review, Phys.R ev., 6 (1898) 170–175.

    Google Scholar 

  178. Fransén, E.: Biophysical simulation of cortical associative memory, Doctoral thesis, Royal Institute of Technology, Stockholm, 1996.

    Google Scholar 

  179. Fransén, E., Lansner, A. and Liljenström, H.: A model of cortical memory based on Hebbian cell assemblies. In Computation and Neural Systems, edited by F. H. Eeckman and J. M. Bower, (Kluwer, Boston) 1993.

    Google Scholar 

  180. Fransén, E. and Lansner, A.: Low spiking rates in a population of mutually exciting pyramidal cells, Network, 6 (1995) 271–288.

    Article  MATH  Google Scholar 

  181. Fransén, E. and Lansner, A.: A model of cortical associative memory based on a horizontal network of connected columns, Network, 9 (1998) 235–264.

    Article  ADS  MATH  Google Scholar 

  182. Frenkel, Y. and Kontorova, T.: On the theory of plastic deformation and twinning, J.Phys.(USSR), 1 (1939) 137–149.

    MathSciNet  MATH  Google Scholar 

  183. Friedberg, R., Lee, T.D. and Sirlin, A.: Class of scalar-field soliton solutions in three space dimensions, Phys.R ev.D, 13 (1976) 2739–2761.

    Article  ADS  MathSciNet  Google Scholar 

  184. Friedberg, R. and Lee, T.D.: Quantum chromodynamics and soliton models of hadrons, Phys.R ev.D, 19 (1978) 2623–2631.

    Article  ADS  Google Scholar 

  185. Friedrich, H. and Wintgen, D.: The hydrogen atom in a uniform magnetic field - an example of chaos, Physics Reports, 183 (1989) 37–79.

    Article  ADS  MathSciNet  Google Scholar 

  186. Friesecke, G. and Pego, R.L.: Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999) 1601–1627.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  187. Friesecke, G. and Pego, R.L.: Solitary waves on FPU lattices: II. Linear implies nonlinear stability, Nonlinearity, 15 (2002) 1343–1359.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  188. Friesecke, G. and Pego, R.L.: Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory, Nonlinearity, 17 (2004) 207–227.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Friesecke, G. and Pego, R.L.: Solitary waves on Fermi-Pasta-Ulam lattices: Iv. Proof of stability at low energy, Nonlinearity, 17 (2004) 229–251.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  190. Friesecke, G. and Wattis, J.A.D.: Existence theorem for travelling waves on lattices, Commun.Math.Phys., 161 (1994) 391–418.

    Article  ADS  MATH  Google Scholar 

  191. Frisch, U.: Turbulence: The Legacy of A.N.Kolmo gorov, (Cambridge University Press, Cambridge) 1995.

    Book  Google Scholar 

  192. Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M.: Method for solving the Korteweg-de Vries equation, Phys.R ev.L ett., 19, (1967) 1095–1097.

    Article  ADS  MATH  Google Scholar 

  193. Gaspard, P.: Rössler systems, (in [469]) 2005.

    MATH  Google Scholar 

  194. Glass, L.: Cardiac arrythmias and the electrocardiogram, (in [469]) 2005.

    Google Scholar 

  195. Glass, L. and mackey, M.C.: From Clocks to Chaos: The Rhythms of Life, (Princeton University Press, Princeton, NJ) 1988.

    Book  MATH  Google Scholar 

  196. Glendinning, P.: Stability, Instability, and Chaos, (Cambridge University Press, Cambridge and New York) 1994.

    Book  MATH  Google Scholar 

  197. Glendinning, P.: Routes to chaos, (in [469]) 2005.

    Google Scholar 

  198. Goenner, H.F.M.: On the history of unified field theories, Living Reviews in Relativity, http://www.theorie.physik.uni-goettingen.de/~goenner, 26 July 2005.

    Google Scholar 

  199. Greene, J.M.: A method for determining a stochastic transition, J.Math.Phys., 20 (1979) 1183–1201.

    Article  ADS  Google Scholar 

  200. Gollub, J.P, and Swinney, H.L.: Onset of turbulence in a rotating fluid, Phys.R ev. Lett., 35 (1975) 927–930.

    Article  ADS  Google Scholar 

  201. Goodwin, B.: How the Leopard Changed its Spots: The Evolution of Complexity, (Scribner’s, New York) 1994.

    Google Scholar 

  202. Grava, T.: Zero-dispersion limits, (in [469]) 2005.

    Google Scholar 

  203. Green, D.E.: The Mechanism of Energy Transduction in Biological Systems, (New York Academy of Sciences, New York) 1974.

    Google Scholar 

  204. Grimshaw, R.: Water waves, (in [469]) 2005.

    Google Scholar 

  205. Grindrod, P.: The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves, (Clarendon Press, Oxford) 1996.

    MATH  Google Scholar 

  206. Guckenheimer, J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, (Springer-Verlag, Berlin) 1983.

    Book  MATH  Google Scholar 

  207. Guevara, M.R., Glass, L. and Shrier, A.: Phase locking, period doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells, Science, 214 (1981) 1350–1353.

    Article  ADS  Google Scholar 

  208. Gustavson, F.G.: On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron.J., 71 (1966) 670–686.

    Article  ADS  Google Scholar 

  209. Hagen, G.H.L.: Über die Bewegung des Wassers in engen zylindrischen Röhren, Pogg. Ann., 46 (1839) 423–442.

    Google Scholar 

  210. Haken, H.: Generalized Ginzburg-Landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions, Zeit.f ür Physik B, 21 (1975) 105–114.

    Article  Google Scholar 

  211. Haken, H.: Analogy between higher instabilities in fluids and lasers, Phys.L ett.A, 53 (1975) 77–78.

    Article  ADS  Google Scholar 

  212. Haken, H.: Quantum Field Theory of Solids, (North-Holland Press, Amsterdam) 1976.

    Google Scholar 

  213. Haken, H.: Advanced Synergetics, third edition, (Springer-Verlag, Berlin) 1993.

    MATH  Google Scholar 

  214. Haken, H.: Principles of Brain Functioning: A Synergetic Approach to Brain Activity, third edition, (Springer-Verlag, Berlin) 1996.

    Book  MATH  Google Scholar 

  215. Haken, H.: Synergetics, (in [469]) 2005.

    MATH  Google Scholar 

  216. Halburd, R. and Biondini, G.: Einstein equations, (in [469]) 2005.

    Google Scholar 

  217. Hamilton, M.P. and Blackstock, D.T.: Nonlinear Acoustics, (Academic Press, New York) 1998.

    Google Scholar 

  218. Hamm, P.: Pump-probe measurements, (in [469]) 2005.

    Google Scholar 

  219. Hammack, J.L.: A note on tsunamis: Their generation and propagation in an ocean of uniform depth, J.Fluid Mech., 60 (1973) 769–799.

    Article  ADS  MATH  Google Scholar 

  220. Hammack, J.L. and Segur, H.: The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. Jour.Fluid Mech., 65 (1974) 289–314.

    Article  ADS  MATH  Google Scholar 

  221. Hasegawa, A. and Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers, Appl.Phys.L ett., 23 (1973) 142–144.

    Article  ADS  Google Scholar 

  222. Hasselblatt, B.: Phase space, (in [469]) 2005.

    Google Scholar 

  223. Hawking, S.: On the Shoulders of Giants, (Running Press, Philadelphia) 2004.

    Google Scholar 

  224. Hayashi, C., Shibayaama, H. and Ueda, Y.: Quasi-periodic oscillations in selfoscillatory systems with external force, (in Japanese) IECE Technical Report, Nonlinear Theory (December 16, 1961).

    Google Scholar 

  225. Hebb, D.O.: Organization of Behavior: A Neuropsychological Theory, (Wiley, New York) 1949.

    Google Scholar 

  226. Hebb, D.O.: The structure of thought. In The Nature of Thought, edited by P. W. Jusczyk and R. M. Klein, (Lawrence Erlbaum Associates, Hillsdale, NJ) 1980.

    Google Scholar 

  227. Hebb, D.O.: Essay on Mind, (Lawrence Erlbaum Associates, Hillsdale, NJ) 1980.

    Google Scholar 

  228. Hebling, D.: Traffic flow, (in [469]) 2005.

    Google Scholar 

  229. Heisenberg, W.: Introduction to a Unified Field Theory of Elementary Particles, (Wiley, New York) 1966.

    MATH  Google Scholar 

  230. Heisenberg, W.: Nonlinear problems in physics, Physics Today, 20 (1967) 27–33.

    Article  ADS  Google Scholar 

  231. Heller, E.J.: Bound-state eigenfunctions of classically chaotic Hamiltonian systems: Scars of periodic orbits, Phys.R ev.L ett., 53 (1984) 1515–1518.

    Article  ADS  MathSciNet  Google Scholar 

  232. Helmholtz, H.: Messungen über den zeitlichen Verlauf der Zuckung animalischer Muskeln und die Fortpflanzungsgeschwindigkeit der Reizung in den nerven, Arch.An at. Physiol., (1850) 276–364.

    Google Scholar 

  233. Henin, F. and Prigogine, I.: Entropy, dynamics, and molecular chaos, Proc.Nat. Acad.Sci.USA, 71 (7) (1974) 2618–2622.

    Article  ADS  MathSciNet  Google Scholar 

  234. Hénon, M.: A two-dimensional mapping with a strange attractor, Comm.in Math. Phys., 50 (1976) 69–77.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  235. Hénon, M. and Heiles, C.: The applicability of the third integral of motion, Astron. J., 69 (1964) 73–79.

    Article  ADS  Google Scholar 

  236. Henry, B.R.: Personal communication, 1988.

    Google Scholar 

  237. Henry, B.R.: Local modes in molecules, (in [469]) 2005.

    Google Scholar 

  238. Hensler, G.: Galaxies, (in [469]) 2005.

    Google Scholar 

  239. Heyerhoff, M.: The history of the early period of soliton theory, in Nonlinearity and Geometry, edited by D. Wójcik and J. Cieśliński, (Polish Scientific Publishers, Warsaw) 1998.

    Google Scholar 

  240. Hilbert, D.: Die Grundlagen der physik, Göttingen Nachrichten, Math.-phys. Klasse, (1916) 395–407.

    Google Scholar 

  241. Hille, B.: Ion Channels of Excitable Membranes, third edition (Sinauer Associates, Sunderland, Massachusetts) 2001.

    Google Scholar 

  242. Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys.R ev.L ett., 27 (1971) 1192–1194.

    Article  ADS  MATH  Google Scholar 

  243. Hobart, R.H.: On the instability of a class of unitary field models, Proc.Phys.So c., 82 (1963) 201–203.

    Article  ADS  MathSciNet  Google Scholar 

  244. Hodgkin, A.L. and Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, Jour.of Physiology, 117 (1952) 500–544.

    Article  Google Scholar 

  245. Holden, A.V.: Hodgkin-Huxley equations, (in [469]) 2005.

    Google Scholar 

  246. Holden, A.V.: Markin-Chizmadzhev model, (in [469]) 2005.

    Google Scholar 

  247. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, (Cambridge University Press, Cambridge) 1993.

    Book  Google Scholar 

  248. Hommes, C.: Economic system dynamics, (in [469]) 2005.

    Google Scholar 

  249. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities, Proc.Nat.A cad.Sci.USA, 79 (1982) 2554–2558.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  250. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons, Proc.Natl.A cad.Sci.USA, 81 (1984) 3088–3092.

    Article  ADS  MATH  Google Scholar 

  251. Horgan, J.: From complexity to perplexity, Scientific American, 272 (June 1995) 104–109.

    Article  Google Scholar 

  252. Houghton, C.: Instantons, (in [469]) 2005.

    Google Scholar 

  253. Houghton, C.: Yang-Mills theory, (in [469]) 2005.

    Google Scholar 

  254. Huygens, C.: The Pendulum Clock, (Iowa State U. Press, Ames) 1986. (Originally published as Horologium Oscillatorium in 1673.)

    Google Scholar 

  255. Ikezi, H., Taylor, R.J. and Baker, D.R.: Formation and interaction of ion acoustic solitons, Phys.R ev.L ett., 25 (1970) 11–14.

    Article  ADS  Google Scholar 

  256. Intel Web Site: http://www.intel.com/research/silicon/mooreslaw.htm 2004.

  257. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, (Cambridge University Press, Cambridge and New York) 1997.

    Book  MATH  Google Scholar 

  258. Ju, Y. and Lee, J.: Flame front, (in [469]) 2005.

    Google Scholar 

  259. Kaluza, T.: Zum Unitätsproblem in der Physik, Sitzungsber.Pr euss.A kad.Wiss., (1921) 966–972.

    Google Scholar 

  260. Kaneko, K. and Tsuda, I.: Complex Systems: Chaos and Beyond, (Wiley, Chichester and New York) 2000.

    MATH  Google Scholar 

  261. Karpman, V.I. and Kruskal, E.M.: Modulated waves in nonlinear dispersive medium, Sov.Phys.JETP, 28 (1969) 277–281.

    ADS  Google Scholar 

  262. Katok, A. and Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, (Cambridge University Press, Cambridge and New York) 1995.

    Book  MATH  Google Scholar 

  263. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution, (Oxford University Press, Oxford) 1993.

    Google Scholar 

  264. Kay, I. and Moses, H.E.: Reflectionless transmission through dielectrics and scattering potentials, J.Appl.Phys., 27 (1956) 1503–1508.

    Article  ADS  MATH  Google Scholar 

  265. Kennedy, M.P.: Chua’s circuit, (in [469]) 2005.

    Google Scholar 

  266. Khodorov, B.I.: The Problem of Excitability, (Plenum, New York) 1974.

    Book  Google Scholar 

  267. King, A.A.: Phase plane, (in [469]) 2005.

    Google Scholar 

  268. Kivshar, Y.: Optical fiber communications, (in [469]) 2005.

    Google Scholar 

  269. Kivshar, Y.S. and Malomed, B.A.: Dynamics of solitons in nearly integrable systems, Rev.Mo d.Phys., 61 (1989) 763–915.

    Article  ADS  Google Scholar 

  270. Klein, A. and Kreis, F.: Nonlinear Schrödinger equation: A testing ground for the quantization of nonlinear waves, Phys.R ev.D, 13 (1976) 3282–3294.

    Article  ADS  Google Scholar 

  271. Knight, B.W.: The relation between the firing rate of a single neuron and the level of activity in a population of neurons, J.Gen.Physiol., 59 (1972) 767–778.

    Article  Google Scholar 

  272. Koch, P.M. and Van Leeuvan, K.H.: The importance of resonances in microwave “ionization” of excited hydrogen atoms, Physics Reports, 255 (1995) 289–403.

    Article  ADS  Google Scholar 

  273. Kohl, G.: Relativität in der Schwebe: Die Rolle von Gustav Mie, Preprint No. 209 (Max Planck Institute for the History of Science, Berlin) 2002.

    Google Scholar 

  274. Kolmogorov, A., Petrovsky, I. and Piscounov, N.: Étude de l’équation de la diffusion avec croissance de la quantité de mati`ere et son application a un probl`eme biologique, Bull.Univ.Mosc ow A, 1 (1937) 137–149.

    Google Scholar 

  275. Kolmogorov, A.: Local structure of turbulence in an incompressible fluid for very large Reynolds numbers, Comptes Rendus (Doklady) de l’Academie des Sciences de l’U.R.S.S., 31 (1941) 301–305.

    MathSciNet  Google Scholar 

  276. Kortweg, D.J. and De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos.Mag., 39 (1895) 422–443.

    Article  MathSciNet  MATH  Google Scholar 

  277. Kosevich, A.: Superfluidity, (in [469]) 2005.

    Google Scholar 

  278. Kuhn, T.: The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, (Harvard University Press, Cambridge, Massachusetts) 1957.

    MATH  Google Scholar 

  279. Kuhn, T.: The Structure of Scientific Revolutions, third edition, (University of Chicago Press, Chicago) 1996. (First published in 1962.)

    Book  Google Scholar 

  280. Kuhn, T.: The Road Since Structure: Philosophical Essays, 1970-1993, with an Autobiographical Interview, (University of Chicago Press, Chicago) 2000.

    Google Scholar 

  281. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence, (Springer-Verlag, Berlin) 1984.

    Book  MATH  Google Scholar 

  282. Kuvshinov, V.: Black holes, (in [469]) 2005.

    Google Scholar 

  283. Kuvshinov, V. and Kuzmin, A.: Fractals, (in [469]) 2005.

    Google Scholar 

  284. Kuvshinov, V. and Minkevich, A.: Cosmological models, (in [469]) 2005.

    Google Scholar 

  285. Lakshmanan, M. and Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns, (Springer-Verlag, Berlin) 2003.

    Book  MATH  Google Scholar 

  286. Lamb, H.: Hydrodynamics, sixth edition, (Dover, New York) 1932.

    MATH  Google Scholar 

  287. Lamb, G.L., Jr.: Analytical description of ultrashort pulse propagation in a resonant medium, Rev.Mo d.Phys., 43 (1971) 99–124.

    Article  ADS  MathSciNet  Google Scholar 

  288. Lamb, G.L., Jr.: personal communication, 1974.

    Google Scholar 

  289. Lamb, G.L., Jr.: Bäcklund transforms at the turn of the century, in Bäcklund Transforms, edited by R. M. Miura, (Springer-Verlag, New York) 1976.

    Google Scholar 

  290. Lamb, G.L., Jr.: Elements of Soliton Theory, (Wiley, New York) 1980.

    MATH  Google Scholar 

  291. Landa, P.S.: Regular and Chaotic Oscillations, (Springer-Verlag, Berlin) 2001.

    Book  MATH  Google Scholar 

  292. Landa, P.S.: Feedback, (in [469]) 2005.

    Google Scholar 

  293. Landa, P.S.: Pendulum, (in [469]) 2005.

    Google Scholar 

  294. Lansner, A.: Cell assemblies, (in [469]) 2005.

    Google Scholar 

  295. Landau, L.D.: Über die Bewegung der Elektronen im Kristallgitter, Phys.Z. Sowjetunion, 3 (1933) 664–665.

    MATH  Google Scholar 

  296. Laskar, J.: The limits of Earth orbital calculations for geological time-scale use, Phil. Trans.R oy.So c.L ondon A, 357 (1999) 1735–1759.

    Article  ADS  Google Scholar 

  297. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl.Math., 21 (1968) 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  298. Leach, A.R.: Molecular modelling: Principles and Applications, second edition, (Prentice-Hall, Harlow) 2001.

    Google Scholar 

  299. Legéndy, C.R.: On the scheme by which the human brain stores information, Math. Biosci., 1 (1967) 555–597.

    Article  Google Scholar 

  300. Lengyel, I., Kádár, S. and Epstein, I.R.: Quasi-two-dimensional Turing patterns in an imposed gradient, Phys.R ev.L ett., 69 (1992) 2729–2732.

    Article  ADS  Google Scholar 

  301. Li, T.Y. and Yorke, J.A.: Period three implies chaos, Amer.Math.Monthly, 82 (1975) 985–992.

    Article  MathSciNet  MATH  Google Scholar 

  302. Lichtenberg, A.J: Averaging methods, (in [469]) 2005.

    Google Scholar 

  303. Lichtenberg, A.J.: Phase Space Dynamics of Particles, (Wiley, New York) 1969.

    MATH  Google Scholar 

  304. Lichtenberg, A.J and Lieberman, M.A.: Regular and Chaotic Dynamics, (Springer-Verlag, New York) 1992.

    Book  MATH  Google Scholar 

  305. Lie, S.: Über Flächen deren Krümmungsradien durch eine Relation verknüpft sind, Arch. f.Math.o g Nature, 4 (1880) 507–512.

    MATH  Google Scholar 

  306. Likharev, K.K.: Dynamics of Josephson Junctions and Circuits, (Gordon and Breach, New York) 1984.

    Google Scholar 

  307. Lillie, R.S.: Factors affecting transmission and recovery in the passive iron wire nerve model, J.Gen.Physiol., 7 (1925) 473–507.

    Article  Google Scholar 

  308. Lonngren, K.E.: Observations of solitons on nonlinear dispersive transmission lines. In Solitons in Action, edited by K. E. Lonngren and A. C. Scott, (Academic Press, New York) 1978.

    MATH  Google Scholar 

  309. Lonngren, K.E.: Ion acoustic soliton experiments in a plasma, Optical Quantum Electronics, 30 (1998) 615–630.

    Article  Google Scholar 

  310. Lonngren, K.E. and Nakamura, Y.: Plasma soliton experiments, (in [469]) 2005.

    Google Scholar 

  311. Lorenz, E.N.: Deterministic nonperiodic flow, J.A tmos.Sci., 20 (1963) 130–141.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  312. Lorenz, E.N.: The Essence of Chaos, (University of Washington Press, Seattle) 1993.

    Book  MATH  Google Scholar 

  313. Lotka, A.: Undamped oscillations from the law of mass action, J.A m.Chem.So c., 42 (1920) 1595–1599.

    Article  Google Scholar 

  314. Lumley, J.L. and Yaglom, A.M.: Flow, Turbulence and Combustion, 66 (2001) 241–286.

    Article  Google Scholar 

  315. Lund, F. and Regge, T.: Unified approach to strings and vortices with soliton solutions, Phys.R ev.D, 14 (1976) 1524–1535.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  316. Luther, R.: Räumliche Fortpflanzung chemischer Reactionen, Zeit.Elektr ochem., 12 (1906) 596–600. (English translation in J.Chem.Ed., 64 (1987) 740-742.)

    Article  Google Scholar 

  317. ttke, W. and Nonnenmacher, G.A.A.: Reinhard Mecke (1895-1969): Scientific work and personality, J.Mol.Struct., 347 (1995) 1–18.

    Article  ADS  Google Scholar 

  318. Ma, W-X.: Integrability, (in [469]) 2005.

    Google Scholar 

  319. Mackay, R.S. and Aubry, S.: Proof of the existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7 (1994) 1623–1643.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  320. Mackey, M.C. and Glass, L.: Oscillation and chaos in physiological control systems, Science, 197 (1977) 287–289.

    Article  ADS  MATH  Google Scholar 

  321. Mainzer, K.: Thinking in Complexity: The Computational dynamics of Matter, Mind, and Mankind, (fourth edition, (Springer, New York) 2003.

    MATH  Google Scholar 

  322. Mainzer, K.: Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science, (World Scientific, Singapore) 1005.

    MATH  Google Scholar 

  323. Malomed, B.: Complex Ginzburg-Landau equation, (in [469]) 2005.

    Google Scholar 

  324. Malomed, B.: Nonlinear Schrödinger equations, (in [469]) 2005.

    Google Scholar 

  325. Makhankov, V.G.: Soliton Phenomenology, (Kluwer Academic, Dordrecht) 1990. 2005.

    Book  Google Scholar 

  326. Mandelbrot, B.B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156 (1967) 636–638.

    Article  ADS  Google Scholar 

  327. Mandelbrot, B.B.: The Fractal Geometry of Nature, (W.H. Freeman, San Francisco) 1983.

    Book  Google Scholar 

  328. Mandelstam, S.: Soliton operators for quantized sine-Gordon equation, Phys.R ev. D, 11 (1975) 3026–3030.

    Article  ADS  MathSciNet  Google Scholar 

  329. Manley, J.M. and Rowe, H.E.: Some general properties of nonlinear elements, Proc. IRE, 44 (1956) 904–913.

    Article  Google Scholar 

  330. Mann, R.B., Morsink, S.M., Sikkema, A.E and Steele, T.G.: Semiclassical gravity in 1 + 1 dimension, Phys.R ev.D, 43 (1991) 3948–3957.

    Article  ADS  MathSciNet  Google Scholar 

  331. Manton, N.S. and Sutcliffe, P.M.: Topological Solitons, (Cambridge University Press, Cambridge) 2004.

    Book  MATH  Google Scholar 

  332. Marín, J.L., Eilbeck, J.C. and Russell, F.M.: Localized moving breathers in a 2D hexagonal lattice, Phys.L ett.A, 248 (1998) 225–229.

    Article  ADS  Google Scholar 

  333. Marín, J.L., Eilbeck, J.C. and Russell, F.M.: 2-D breathers and applications. In Nonlinear Science at the Dawn of the 21st Century, edited by P. L. Christiansen, M. P. Sorensen and A. C. Scott, (Springer-Verlag, Berlin) 2000.

    Google Scholar 

  334. Marín, J.L., Russell, F.M. and Eilbeck, J.C.: Breathers in cuprite-like lattices, Phys.L ett.A, 281 (2001) 21–25.

    Article  ADS  MATH  Google Scholar 

  335. Marklof, J.: Energy level statistics, lattice point problems and almost modular functions, in Frontiers in Number Theory, Physics and Geometry.V olume 1: On Random Matrices, Zeta Functions and Dynamical Systems, (Les Houches, 9-21 March 2003), (Springer, Berlin) to appear.

    Google Scholar 

  336. Marshall, A.: The Principles of Economics, eighth edition, (Prometheus Books, Amherst, New York) 1997. (Originally published in 1920.)

    Google Scholar 

  337. Masmoudi, N.: Rayleigh-Taylor instability, (in [469]) 2005.

    Google Scholar 

  338. Mason, L.: Twistor theory, (in [469]) 2005.

    Google Scholar 

  339. May, R.M.: Simple mathematical models with very complicated dynamics, Nature, 261 (1976) 459–469.

    Article  ADS  MATH  Google Scholar 

  340. Maynard, E.M., Nordhausen, C.T. and Normann, R.A.: The Utah intracortical electrode array: A recording structure for potential brain-computer interfaces, Electroencephalogr.Clin.Neur ophysiol., 102 (1997) 228–239.

    Article  Google Scholar 

  341. Mayr, E.: What Evolution Is, (Basic Books, New York) 2002.

    Google Scholar 

  342. Mccammon, J.A. and Harvey, S.C.: Dynamics of Proteins and Nucleic Acids, (Cambridge University Press, Cambridge) 1987.

    Book  Google Scholar 

  343. Mcclare, C.W.F.: Chemical machines, Maxwell’s demons and living organisms, J. theoret.Biol., 30 (1971) 1–34.

    Article  Google Scholar 

  344. Mcclare, C.W.F.: A “molecular energy” muscle model, J.the oret.Biol., 35 (1972) 569–595.

    Google Scholar 

  345. Mcclare, C.W.F.: Resonance in bioenergetics, (in [203]) 1974.

    Book  Google Scholar 

  346. Mccowan, J.: On the solitary wave, Philos.Mag., 32 (1891) 45–58; 553-555.

    Article  MATH  Google Scholar 

  347. Mcculloch, W.S. and Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity, Bull.Math.Biophys., 5 (1943) 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  348. Mchugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S. and Wilson, M.A.: Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice, Cell, 87 (1996) 1339–1349.

    Article  Google Scholar 

  349. Mckean, H.: Nagumo’s equation, Adv.M ath., 4 (1970) 209–223.

    Article  MathSciNet  MATH  Google Scholar 

  350. Mclaughlin, D.W. and Scott, A.C.: Perturbation analysis of fluxon dynamics, Phys.R ev.A, 18 (1978) 1652–1680.

    Article  ADS  Google Scholar 

  351. Mclaughlin, J.B. and Martin, P.C.: Transition to turbulence of a statically stressed fluid, Phys.R ev.L ett., 33 (1974) 1189–1192.

    Article  ADS  Google Scholar 

  352. Mclaughlin, J.B. and Martin, P.C.: Transition to turbulence in a statically stressed fluid system, Phys.R ev.A, 12 (1975) 186–203.

    Article  ADS  Google Scholar 

  353. Mcmahon, B.H. and Labutte, M.X.: Protein structure, (in [469]) 2005.

    Google Scholar 

  354. Mecke, R.: Valency and deformation vibrations of multi-atomic molecules. III. Methane, acetylane, ethylene and halogen derivatives, Zeit.f ür Phys.Chem.B, 17 (1932) 1–20.

    ADS  Google Scholar 

  355. Mecke, R.: Dipolmoment und chemische Bindung, Zeit.f ür Elektrochem., 54 (1950) 38–42.

    Google Scholar 

  356. Mecke, R., Baumann, W. and Freudenberg, K.: Das Rotationsschwingungsspectrum des Wasserdampfes, Zeit.f ür Physik, 81 (1933) 313–465.

    Article  ADS  Google Scholar 

  357. Mecke, R. and Ziegler, R.: Das Rotationsschwingungsspektrum des Acetylens (C2H2), Zeit.f ür Physik, 101 (1936) 405–417.

    Article  ADS  Google Scholar 

  358. Meiss, J.D.: Standard map, (in [469]) 2005.

    Google Scholar 

  359. Melnikov, V.K.: On the stability of the center for time periodic perturbations, Trans. Moscow.Math.So c., 12 (1963) 1–57.

    MathSciNet  Google Scholar 

  360. Mie, G.: Grundlagen einer Theorie der Materie, Ann.der Physik, 37 (1912) 511-534; 39 (1912) 1-40; 40 (1913) 1–66.

    Article  ADS  MATH  Google Scholar 

  361. Milner, P.M.: The cell assembly: Mark II, Psychol.R ev., 64 (1957) 242–252.

    Google Scholar 

  362. Milner, P.M.: The mind and Donald O. Hebb, Sci.A m., January 1993, 124–129.

    Google Scholar 

  363. Minding, E.F.A.: Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen aufeinander abwickelbar sind oder nicht, Jour.f ür reine und angewandte Math., 19 (1839) 370–387.

    Google Scholar 

  364. Minkowski, H.: Die Grundleichungen für die elektromagnetischen Vorgäge in bewegten Körpern, Göttingen Nachrichten, 8 (1908) 59–111. (Translated in The Principle of Relativity, Dover, New York, 1923).

    Google Scholar 

  365. Minorsky, N.: Nonlinear Oscillations, (Van Nostrand, New York) (1962).

    MATH  Google Scholar 

  366. Mitchell, P.: Coupling of phosphorylation to electron and proton transfer by a chemiosmotic type of mechanism, Nature, 191 (1961) 144–148.

    Article  ADS  Google Scholar 

  367. Moore, G.E.: Cramming more components onto integrated circuits, Electronics, 38 (1965) 114–117.

    Google Scholar 

  368. Mollenauer, L.F.: Solitons in Optical Fibers: Fundamentals and Applications to Telecommunications, (Academic Press, New York) 2005.

    Google Scholar 

  369. Moloney, J.V.: Nonlinear optics, (in [469]) 2005.

    MATH  Google Scholar 

  370. Moloney, J.V. and Newell, A.C.: Nonlinear Optics, second edition, (Westview Press, Colorado) 2004.

    MATH  Google Scholar 

  371. Moore, R.O. and Biondini, G.: Harmonic generation, (in [469]) 2005.

    Google Scholar 

  372. Moore, W.: Schrödinger: Life and Thought, (Cambridge University Press, Cambridge) 1989.

    Book  MATH  Google Scholar 

  373. Mornev, O.: Geometrical optics, nonlinear, (in [469]) 2005.

    Google Scholar 

  374. Mornev, O.: Gradient system, (in [469]) 2005.

    Google Scholar 

  375. Mornev, O.: Zeldovich-Frank-Kamenetsky equation, (in [469]) 2005.

    Google Scholar 

  376. Mosekilde, E.: Topics in Nonlinear Biology. (World Scientific, Singapore) 1996.

    MATH  Google Scholar 

  377. Murray, N. and Holman, M.: The origin of chaos in the outer solar system, Science, 283 (1999) 1877–1881.

    Article  ADS  Google Scholar 

  378. Mygind, J.: Josephson junctions, (in [469]) 2005.

    Google Scholar 

  379. Nagumo, J., Arimoto, S. and Yoshizawa, S.: An active impulse transmission line simulating nerve axon, Proc.IRE, 50 (1962) 2061–2070.

    Article  Google Scholar 

  380. Nappi,C., Lisitskiy, M.P., Rotoli, G., Cristiano, R. and Barone, A.: New fluxon resonant mechanism in annular Josephson tunnel structures, Phys.R ev.L ett., 93 (2004) 187001–1–4.

    Article  ADS  Google Scholar 

  381. Naugolnykh, K. and Ostrovsky, L.: Nonlinear Wave Processes in Acoustics, (Cambridge University Press, Cambridge) 1998.

    MATH  Google Scholar 

  382. Newell, A.C. (editor): Nonlinear Wave Motion, AMS Lectures in Applied Mathematics, 15 (American Mathematical Society, Providence, R.I.) 1974.

  383. Newell, A.C.: Solitons in Mathematics and Physics, (SIAM, Philadelphia) 1984.

    MATH  Google Scholar 

  384. Newell, A.C.: Inverse scattering method or transform, (in [469]) 2005.

    Google Scholar 

  385. Newton, I.: Optiks, based on the fourth edition of 1730, (Dover, New York) 1952.

    Google Scholar 

  386. Newton, P.K.A. and Aref, H.: Chaos vs. turbulence, (in [469]) 2005.

    Google Scholar 

  387. Nicolelis, M.A.L., Ghazanfar, A.A., Faggin, B.M., Votaw, S. and Oliveira, L.M.O.: Reconstructing the engram: Simultaneous, multisite, many single neuron recordings, Neuron, 18 (1997) 529–537.

    Article  Google Scholar 

  388. Nicolis, G.: Introduction to Nonlinear Science, (Cambridge University Press, Cambridge) 1995.

    Book  Google Scholar 

  389. Nicolis, G.: Brusselator, (in [469]) 2005

    Google Scholar 

  390. Nicolis, G.: Chemical kinetics, (in [469]) 2005.

    Google Scholar 

  391. Nicolis, G.: Nonequilibrium statistical mechanics, (in [469]) 2005.

    Google Scholar 

  392. Nicolis, G. and Prigogine, I.: Self-organization in Nonequilibrium Systems, (Wiley, New York) 1977.

    MATH  Google Scholar 

  393. Nicolis, J.S.: Dynamics of Hierarchical Systems: An Evolutionary Approach, (Springer- Verlag, Berlin) 1986.

    Book  MATH  Google Scholar 

  394. Neyts, K. and Beeckman, J.: Liquid crystals, (in [469]) 2005.

    Google Scholar 

  395. Nordhausen, C.T., Maynard, E.M. and Normann, R.A.: Single unit recording capabilities of a 100 microelectrode array, Brain Res., 726 (1996) 129–140.

    Article  Google Scholar 

  396. Olsen, M., Smith, H. and Scott, A.C.: Solitons in a wave tank, Am.J.Phys., 52 (1984) 826–830.

    Article  ADS  Google Scholar 

  397. Onorato, M., Osborne, A.R., Serio, M. and Bertone, S.: Freak waves in random oceanic sea states, Phys.R ev.L ett., 86 (2001) 5831–5834.

    Article  ADS  Google Scholar 

  398. Osborne, A.R. and Burch, T.L.: Internal solitons in the Andaman Sea, Science, 208 (1980) 451–460.

    Article  ADS  Google Scholar 

  399. Osborne, A.R., Onorato, M. and Serio, M.: The nonlinear dynamics of rogue waves and holes in deep water gravity wave trains, Phys.L ett.A, 275 (2000) 386–393.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  400. Ostrovsky, L.: Modulated waves, (in [469]) 2005.

    Google Scholar 

  401. Ostrovsky, L.: Shock waves, (in [469]) 2005.

    Google Scholar 

  402. Ostrovsky, L.: Propagation of wave packets and space-time self-focusing in a nonlinear medium, Sov.Phys.JETP, 24 (1967) 797–800.

    ADS  Google Scholar 

  403. Ostrovsky, L. and Hamilton, M.: Nonlinear acoustics, (in [469]) 2005.

    Google Scholar 

  404. Ostrovsky, L.A. and Potapov, A.I.: Modulated Waves: Theory and Applications, (Johns Hopkins University Press, Baltimore) 1999.

    MATH  Google Scholar 

  405. Ostrovsky, L.A. and Stepanyants, Yu.A.: Do internal solitons exist in the ocean? Rev.Ge ophys., 27 (1989) 293–310.

    ADS  Google Scholar 

  406. Ostrovsky, L. and Sverdlov, M.: Hurricanes and tornadoes, (in [469]) 2005.

    Google Scholar 

  407. Ott, E.: Chaos in Dynamical Systems, (Cambridge University Press, Cambridge and New York) 1993.

    MATH  Google Scholar 

  408. Pechkin, A.A.: Operationalism as the philosophy of Soviet physics: The philosophical bachgrounds of L.I. Mandelstam and his school, Synthese, 124 (2000) 407–432.

    Article  MathSciNet  Google Scholar 

  409. Pedersen, N.F.: Superconductivity, (in [469]) 2005.

    Google Scholar 

  410. Pekar, I.: Untersuchungen über die Elektronentheorie der Kristalle, (Akademie-Verlag, Berlin) 1954.

    MATH  Google Scholar 

  411. Pelinovsky, D.: Manley-Rowe relations, (in [469]) 2005.

    Google Scholar 

  412. Pelloni, B.: Burgers equation, (in [469]) 2005.

    MATH  Google Scholar 

  413. Penfield, P.: Frequency-Power Formulas, (Wiley, New York) 1960.

    Google Scholar 

  414. Penrose, R.: Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation, 7 (1976) 31–52.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  415. Perring, J.K. and Skyrme, T.H.R.: A model unified field equation, Nucl.Phys., 31 (1962) 550–555.

    Article  MathSciNet  MATH  Google Scholar 

  416. Petty, M.: Langmuir-Blodgett films, (in [469]) 2005.

    Google Scholar 

  417. Peyrard, M.: Biomolecular solitons, (in [469]) 2005.

    Google Scholar 

  418. Pikovsky, A. and Rosenlum, M.: Van der Pol equation, (in [469]) 2005.

    Google Scholar 

  419. Poincar É, H.: Science and Method, (St. Augustine’s Press, Chicago) 2001. (First published in 1903.)

    Google Scholar 

  420. Poincar É, H.: Sur la dynamique de l’électron, Comptes Rendus Acad.Sci., 140 (1905) 1504–1508.

    ADS  MATH  Google Scholar 

  421. Pojman, J.A.: Polymerization, (in [469]) 2005.

    MATH  Google Scholar 

  422. Pojman, J.A., Ilyashenko, V.M. and Khan, A.M.: Free-radical frontal polymerization: Self-propagating thermal reaction waves, J.Chem.So c.F araday Trans., 92 (1996) 2825–2837.

    Article  Google Scholar 

  423. Prigogine, I.: Nonequilibrium Statistical Mechanics, (Wiley, New York) 1962.

    MATH  Google Scholar 

  424. Pushkin, D.O. and Aref, H.: Cluster coagulation, (in [469]) 2005.

    Google Scholar 

  425. Quetelet, A. and Verhulst, P.F.: Annuaire de l’Académie Royale des Sciences de Belgique, 16 (1850) 97–124.

    Google Scholar 

  426. Rabinovich, M.I. and Rulkov, N.F.: Chaotic dynamics, (in [469]) 2005.

    Google Scholar 

  427. Raby, O.: Radio’s First Voice: The Story of Reginald Fessenden, (MacMillan of Canada, Toronto) 1970.

    Google Scholar 

  428. Ranada, A.F., Trueba, J.L. and Donoso, J.M.: Ball lightning, (in [469]) 2005.

    Google Scholar 

  429. Rayleigh, Lord: On waves, Philos.Mag., 1 (1876) 257–279.

    Article  MATH  Google Scholar 

  430. Rayleigh, Lord: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc.L ondon Math.So c., 14 (1883) 170–177.

    MathSciNet  MATH  Google Scholar 

  431. Recami, E. and Scott, A.C.: Tachyons and superluminal motion, (in [469]) 2005.

    Google Scholar 

  432. Remoissenet, M.: Waves Called Solitons, third edition, (Springer-Verlag, Berlin and New York) 1999.

    Book  MATH  Google Scholar 

  433. Reynolds, O.: On the experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels, Phil.T rans.R oy.So c.L ondon A, 35 (1883) 935—982.

  434. Rikitake, T.: Oscillations of a system of disk dynamos, Proc.Cambridge Phil.So c., 174 (1958) 89–105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  435. Rinzel, J. and Keller, J.: Traveling-wave solutions of a nerve conduction equation, Biophys.J., 13 (1973) 1313–1337.

    Article  ADS  Google Scholar 

  436. Rogers, C.: Bäcklund transformations, (in [469]) 2005.

    Google Scholar 

  437. Rosen, G.: Particle-like solutions to nonlinear scalar wave theories, J.Math.Phys., 6 (1965) 1269–1272.

    Article  ADS  Google Scholar 

  438. Rosen, N. and Rostenstock, H.B.: The force between particles in a nonlinear field theory, Phys.R ev., 85 (1952) 257.

    Article  ADS  Google Scholar 

  439. Rosenblum, M. and Pikovsky, A.: Synchronization, (in [469]) 2005.

    MATH  Google Scholar 

  440. Rosser, J.B. Jr.,: On the complexities of complex economic dynamics, J.Ec on. Perspectives, 13 (1999) 169–192.

    Article  Google Scholar 

  441. Rössler, O.E.: An equation for continuous chaos, Phys.L ett.A, A57 (1976) 397–398.

    Article  ADS  MATH  Google Scholar 

  442. Ruelle, D.: Chaotic Evolution and Strange Attractors, (Cambridge University Press, Cambridge) 1989.

    Book  MATH  Google Scholar 

  443. Ruelle, D. and Takens, F.: On the nature of turbulence, Commun.Math.Phys., 20 (1971) 167–192.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  444. Russell, F.M.: The observation in mica of charged particles from neutrino interactions, Phys.L ett.B 25 (1967) 298–300.

    Article  ADS  Google Scholar 

  445. Russell, F.M.: Identification and selection criteria for charged lepton tracks in mica, Nucl.T racks Radiat.Me as., 15 (1988) 41–44.

    Article  Google Scholar 

  446. Russell, F.M. and Collins, D.R.: Lattice-solitons and non-linear phenomena in track formation, Radiation Meas., 25 (1995) 67–70.

    Article  ADS  Google Scholar 

  447. Russell, F.M. and Collins, D.R.: Lattice-solitons in radiation damage, Nucl. Instrum.Meth.in Phys.R es.B, 105 (1995) 30–34.

    Article  ADS  Google Scholar 

  448. Russell, J.S.: Report on Waves, British Association for the Advancement of Science, (1845).

    Google Scholar 

  449. Russell, J.S.: The Wave of Translation in the Oceans of Water, Air and Ether, (Trübner, London) 1885.

    Google Scholar 

  450. Saint-Venant, A.B.: Mouvements des molécules de l’onde solitaire, Comptes Rendu, 101 (1885) 1101–1105, 1215-1218, and 1445-1447.

    MATH  Google Scholar 

  451. Salerno, M.: Salerno equation, (in [469]) 2005.

    Google Scholar 

  452. Schemer, L., Jiao, H.Y., Kit, E. and Agnon, Y.: Evolution of a nonlinear wave field along a tank: Experiments and numerical simulations based on the Zakharov equation, Jour.Fluid Mech., 427 (2000) 107–129.

    Article  ADS  Google Scholar 

  453. Schöll, E.: Diodes, (in [469]) 2005.

    Google Scholar 

  454. Schrieffer, J.R.: Theory of Superconductivity, (Perseus Books, New York) 1971.

    MATH  Google Scholar 

  455. Schrödinger, E.: Quantisierung als Eigenwertproblem, Ann.der Physik, 29 (1926) 361–376.

    Article  ADS  MATH  Google Scholar 

  456. Schrödinger, E.: Contributions to Born’s new theory of the electromagnetic field, Proc.R oyal Soc.L ondon A, 150 (1935) 465–477.

    Article  ADS  MATH  Google Scholar 

  457. Schrödinger, E.: What Is Life? (Cambridge University Press, Cambridge) 1944. (Republished in 1967.)

    Google Scholar 

  458. Schwarzschild, K.: Über das Gravitationsfeld eines Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie, Sitz.der k.Pr eussischen Akademie der Wiss., 1 (1916) 424–434.

    MATH  Google Scholar 

  459. Scott, A.C.: Neuristor propagation on a tunnel diode loaded transmission line, Proc. IEEE, 51 (1963) 240.

    Article  Google Scholar 

  460. Scott, A.C.: A nonlinear Klein-Gordon equation, Am.J.Physics, 37 1969 52–61.

    Article  ADS  Google Scholar 

  461. Scott, A.C.: Active and Nonlinear Wave Propagation in Electronics, (Wiley, New York) 1970.

    Google Scholar 

  462. Scott, A.C.: The electrophysics of a nerve fiber, Rev.Mo d.Phys., 11 (1975) 487–553.

    Article  ADS  Google Scholar 

  463. Scott, A.C.: Citation classic - Soliton - New concept in applied science, Current Contents, 34 (1979) 162.

    Google Scholar 

  464. Scott, A.C.: Davydov’s soliton, Physics Reports, 217 (1992) 1–67.

    Article  ADS  MATH  Google Scholar 

  465. Scott, A.C.: Stairway to the Mind, (Springer-Verlag, New York) 1995.

    Book  Google Scholar 

  466. Scott, A.C.: Neuroscience: A Mathematical Primer, (Springer-Verlag, New York) 2002.

    MATH  Google Scholar 

  467. Scott, A.C.: Nonlinear Science: Emergence and Dynamics of Coherent Structures, second edition, (Oxford University Press, Oxford) 2003.

    MATH  Google Scholar 

  468. Scott, A.C.: Reductionism revisited, Journal of Consciousness Studies, 11(2) (2004) 51–68.

    MathSciNet  Google Scholar 

  469. Scott, A.C. (editor): Encyclopedia of Nonlinear Science, (Tayor & Francis, New York) 2005.

    MATH  Google Scholar 

  470. Scott, A.C.: Distributed oscillators, (in [469]) 2005.

    Google Scholar 

  471. Scott, A.C.: Emergence, (in [469]) 2005.

    Google Scholar 

  472. Scott, A.C.: Matter, nonlinear theory of, (in [469]) 2005.

    Google Scholar 

  473. Scott, A.C.: Multiplex neuron, (in [469]) 2005.

    Google Scholar 

  474. Scott, A.C.: Nerve impulses, (in [469]) 2005.

    Google Scholar 

  475. Scott, A.C.: Neuristor, (in [469]) 2005.

    Google Scholar 

  476. Scott, A.C.: Rotating-wave approximation, (in [469]) 2005.

    Google Scholar 

  477. Scott, A.C.: Threshold phenomena, (in [469]) 2005.

    Google Scholar 

  478. Scott, A.C.: Supersonic waves, Proceedings of the Lev Ostrovsky Conference on Nonlinear Wave Physics, St. Petersburg, Russia, 1-9 August 2005.

    Google Scholar 

  479. Scott, A.C., Chu, F.Y.F. and Mclaughlin, D.W.: The soliton: A new concept in applied science, Proc.IEEE, 61 (1973) 1443–1483.

    Article  ADS  MathSciNet  Google Scholar 

  480. Scott, A.C., Eilbeck, J.C. and Gilhoj, H.: Quantum lattice solitons, Physica D, 78 (1994) 194–213.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  481. Scott, A.C. and Johnson, W.J.: Internal flux motion in large Josephson junctions, Appl.Phys.L ett., 14 (1960) 316–318.

    Article  ADS  Google Scholar 

  482. Seeger, A., Donth, H. and Kochendörfer, A.: Theorie der Versetzungen in eindimensionalen Atomreihen, Zeit.f ür Physik, 134 (1953) 173–193.

    Article  ADS  MATH  Google Scholar 

  483. Shapiro, I.I.: A century of relativity, Rev.Mo d.Phys., 71 (1999) S41–S53.

    Article  ADS  Google Scholar 

  484. Shohet, J.L.: Private communication, 2004.

    Google Scholar 

  485. Shohet, J.L.: Nonlinear plasma waves, (in [469]) 2005.

    Google Scholar 

  486. Shohet, J.L., Barmish, B.R., Ebraheem, H.K. and Scott, A.C.: The sine-Gordon equation in reversed-field pinch experiments, Physics of Plasmas, 11 (2004) 3877–3887.

    Article  ADS  Google Scholar 

  487. Sievers, A.J. and Takeno, S.: Intrinsic localized modes in anharmonic crystals, Phys. Rev.L ett., 39 (1988) 3374–3379.

    Article  ADS  Google Scholar 

  488. Slater, J.C.: Quantum Theory of Matter, (McGraw-Hill, New York) 1951.

    MATH  Google Scholar 

  489. Smale, S.: Differentiable dynamical systems, Bull.A mer.Math.So c., 73 (1967) 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  490. Smil, V.: Global warming, (in [469]) 2005.

    Google Scholar 

  491. Sobell, H.M.: DNA premelting, (in [469]) 2005.

    Google Scholar 

  492. Solari, H.G. and Natiello, M.: Lasers, (in [469]) 2005.

    Google Scholar 

  493. Sorensen, M.P.: Perturbation theory, (in [469]) 2005.

    Google Scholar 

  494. Stuart, G., Spruston, N. and HÄusser, M.: Dendrites, (Oxford University Press, Oxford) 1999.

    Google Scholar 

  495. Steuerwald, R.: Über Enneper’sche Flächen und Bäcklund’sche Transformation, (Bayerischen Akad. Wiss., München) 1936.

    MATH  Google Scholar 

  496. Stokes, G.G.: Mathematical and Physical Papers, (Cambridge University, Cambridge) 1880.

    Google Scholar 

  497. Strogatz, S.H.: Nonlinear Dynamics and Chaos, (Addison-Wesley, Reading, Massachusetts) 1994.

    Google Scholar 

  498. Strogatz, S.H.: Synch: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, (Hyperion, New York) 2003.

    Google Scholar 

  499. Sutcliffe, P.: Skyrmions, (in [469]) 2005.

    MATH  Google Scholar 

  500. Svendsen, I.A. and Buhr Hansen, J.: On the deformation of periodic long waves over a gently sloping bottom, Jour.Fluid Mech., 87 (1978) 433–448.

    Article  ADS  MATH  Google Scholar 

  501. Swain, J.D.: Tensors, (in [469]) 2005.

    Google Scholar 

  502. Takhtajan, L.A. and Faddeev, L.D.: Essentially nonlinear one-dimensional model of classical field theory, Theor.Math.Phys., 21 (1974) 1046–1057.

    Article  Google Scholar 

  503. Tanuiti, T. and Washimi, H.: Self trapping and instability of hydrodynamic waves along the magnetic field in a cold plasma, Phys.R ev.L ett., 21 (1968) 209–212.

    Article  ADS  Google Scholar 

  504. Tappert, F. and Varma, C.M.: Asymptotic theory of self trapping of heat pulses in solids, Phys.R ev.L ett., 25 (1970) 1108–1111.

    Article  ADS  MathSciNet  Google Scholar 

  505. Taylor, G.I.: The formation of a blast wave from a very intense explosion. I. theoretical discussion. II. The atomic explosion of 1945, Proc.R oy.So c.(L ondon) A, 201 (1950) 159–186.

    ADS  MATH  Google Scholar 

  506. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc.R oy.So c.(L ondon) A, 201 (1950) 192–196.

    ADS  MathSciNet  MATH  Google Scholar 

  507. Taylor, J.B.: Unpublished 1968 report CLM-PR-12 at Culham Laboratories (England), referenced in [199] and noted by J.D. Meiss (personal communication).

  508. Taylor, R.P.: Lévy flights, (in [469]) 2005.

    Google Scholar 

  509. Taylor, R.P., Newbury, R., Micolich, A.P., Fromhold, T.M., Linke, H., Davies, A.G. and Martin, T.P.: A Review of Fractal Conductance Fluctuations in Ballistic Semiconductor Devices. In Electron Transport in Quantum Dots, edited by J. P. Bird, (Kluwer Academic/Plenum, New York) 2003.

    Google Scholar 

  510. Taylor, R.P., Spehar, B., Wise, J.A., Clifford, C.W.G., Newell, B.R., Hägerhäll, C.M., Purcell, T. and Martin, T.P.: Perceptual and Physiological response to the Visual Complexity of Fractals, Journal of Nonlinear Dynamics, Psychology, and Life Sciences, 9 (2005) 89–114.

    Google Scholar 

  511. Tegmark, M.: The importance of quantum decoherence in brain processes, Phys.R ev. E, 61 (2000) 4194–4206.

    Article  ADS  Google Scholar 

  512. Thacker, H.B.: Exact integrability in quantum field theory and statistical systems, Rev.Mo d.Phys., 53 (1981) 253–285.

    Article  ADS  MathSciNet  Google Scholar 

  513. Thompson, D.W.: On Growth and Form, abridged edition, (Cambridge University Press, Cambridge) 1961.

    Google Scholar 

  514. Thompson, J.M.T. and Stewart, H.B.: Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists, second edition, (Wiley, New York) 2002.

    Google Scholar 

  515. Tinkham, M.: Introduction to Superconductivity, (McGraw-Hill, New York) 1996.

    Google Scholar 

  516. Tobias, D.J. and Freites, J.A.: Molecular dynamics, (in [469]) 2005.

    Google Scholar 

  517. Toda, M.: Vibration of a chain with nonlinear interactions, J.Phys.So c.Jap an, 22 (1967) 431–436.

    Article  ADS  Google Scholar 

  518. Toda, M.: Theory of Nonlinear Lattices, (Springer-Verlag, Berlin,) 1981.

    Book  MATH  Google Scholar 

  519. Turin, L.: Personal communication, December 2004.

    Google Scholar 

  520. Turing, A.: The chemical basis of morphogenesis, Philos.T rans.R oy.So c.B, 237 (1952) 37–72.

    ADS  MathSciNet  MATH  Google Scholar 

  521. Tuszyński, J.A.: Critical phenomena, (in [469]) 2005.

    Google Scholar 

  522. Tuszyński, J.A.: Ferromagnetism and ferroelectricity, (in [469]) 2005.

    Google Scholar 

  523. Tuszyński, J.A.: Renormalization groups, (in [469]) 2005.

    Google Scholar 

  524. Tuszyński, J.A.: Scheibe aggregates, (in [469]) 2005.

    Google Scholar 

  525. Ueda, Y.: The Road to Chaos, (Aerial Press, Santa Cruz) 1992.

    MATH  Google Scholar 

  526. Van Der Pol, B.: On relaxation oscillations, Philos.Mag., 2 (1926) 978–992.

    Article  MATH  Google Scholar 

  527. Van Der Pol, B.: The nonlinear theory of electric oscillations, Proc.IRE, 22 (1934) 1051–1086.

    Article  MATH  Google Scholar 

  528. Van Der Pol, B. and Van Der Mark, J.: Frequency demultiplication, Nature, 120 (1927) 363–364.

    Article  ADS  Google Scholar 

  529. Van Der Pol, B. and Van Der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electric model of the heart, Philos.Mag., 6 (1928) 763–765.

    Article  Google Scholar 

  530. Veselov, A.P.: Huygens principle, (in [469]) 2005.

    MATH  Google Scholar 

  531. Van Der Heijden, G.: Butterfly effect, (in [469]) 2005.

    Google Scholar 

  532. Van Gulick, V.: Reduction, emergence and other recent options on the mind/body problem, Journal of Consciousness Studies, 8(9-10) (2001) 1–34.

    Google Scholar 

  533. Vázquez, L., Pascual, P. and Jiménez, S.: Charge density waves, (in [469]) 2005.

    Google Scholar 

  534. Vázquez, L. and Zorano, M.P.: FitzHugh-Nagumo equation, (in [469]) 2005.

    Google Scholar 

  535. Verhulst, P.F.: Recherches mathématiques sur la loi d’accroissement de la population, Nouv.M ém.de l’Academie Royale des Sci.et Belles-Lettres de Bruxelles, 18 (1845) 1–41.

    Google Scholar 

  536. Von Bertalanffy, L.: Untersuchungen über die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie; Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Arch.Entwicklungsme ch., 131 (1934) 613–652.

    Article  Google Scholar 

  537. Von Bertalanffy, L.: Zueiner allgemeinen Systemlehre, Biologia Generalis, 195 (1949) 114–129.

    Google Scholar 

  538. Von Bertalanffy, L.: The concepts of systems in physics and biology, Bulletin of the British Society for the History of Science, 1 (1949) 44–45.

    Google Scholar 

  539. Von Bertalanffy, L.: Perspectives on General Systems Theory, (George Braziller, New York) 1975.

    Google Scholar 

  540. Von Hippel, A.R.: Dielectrics and Waves, (Wiley, New York) 1954.

    Google Scholar 

  541. Voorhees, B..H.: Axiomatic theory of hierarchical systems, Behav.Sci., 28 (1983) 24–34.

    Article  Google Scholar 

  542. Wadati, M.: Quantum inverse scattering method, (in [469]) 2005.

    Google Scholar 

  543. Walker, G.H. and Ford, J.: Amplitude instability and ergodic behaviour for conservative nonlinear oscillator systems, Phys.R ev., 188 (1969) 416–432

    Article  ADS  Google Scholar 

  544. Washimi, H. and Tanuiti, T.: Propagation of ion acoustic solitary waves of small amplitude, Phys.R ev.L ett., 17 (1966) 996–998.

    Article  ADS  Google Scholar 

  545. Watson, J.D.: The Double Helix: A Personal Account of the Discovery of the Structure of Dna, (Touchstone, New York) 1968.

    Google Scholar 

  546. Waxman, S.G.: Regional differentiation of the axon, a review with special reference to the concpet of the multiplex neuron, Brain Res., 47 (1972) 269–288.

    Article  Google Scholar 

  547. Weber, J.: Detection and generation of gravitational waves, Phys.R ev., 117 (1960) 306–313.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  548. Weinberg, S.: Precision test of quantum mechanics, Phys.R ev.L ett., 62 (1989) 485–488.

    Article  ADS  Google Scholar 

  549. Weiss, M.T.: Quantum derivation of energy relations analogous to those for nonlinear reactances, Proc.IRE, 45 (1957) 1012–1013.

    Google Scholar 

  550. Weyl, H.: Feld und Materie, Ann.der Physik, 65 (1921) 541–563.

    Article  ADS  MATH  Google Scholar 

  551. Whitham, G.B.: Linear and Nonlinear Waves, (Wiley, New York) 1974.

    MATH  Google Scholar 

  552. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine, second edition, (Wiley, New York), 1961. (First published in 1948.)

    MATH  Google Scholar 

  553. Wiener, N.: Nonlinear prediction and dynamics, Proc.Thir d Berkeley Symp., 3 (1956) 247–252.

    MathSciNet  Google Scholar 

  554. Wiener, N.: Nonlinear Problems in Random Theory, (Wiley, New York) 1958.

    MATH  Google Scholar 

  555. Wiggins, S.: Global Bifurcations and Chaos, (Springer-Verlag, New York) 1988.

    Book  MATH  Google Scholar 

  556. Wilhelmsson, H.: Alfvén waves, (in [469]) 2005.

    Google Scholar 

  557. Wilson, H.R.: Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience, (Oxford University Press, Oxford) 1999.

    MATH  Google Scholar 

  558. Wilson, H.R. and Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons, Biophys.J., 12 (1972) 1–24.

    Article  ADS  Google Scholar 

  559. Wilson, H.R. and Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13 (1973) 55–80.

    Article  MATH  Google Scholar 

  560. Wilson, M.A. and Mcnaughton, B.L.: Dynamics of the hippocampal ensemble code for space, Science, 261 (1993) 1055–1058.

    Article  ADS  Google Scholar 

  561. Winfree, A.T.: When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias, (Princeton University Press, Princeton) 1987.

    Google Scholar 

  562. Winfree, A.T.: The Geometry of Biological Time, (Springer-Verlag, New York) 2001.

    Book  MATH  Google Scholar 

  563. Winfree, A.T.: Dimensional analysis, (in [469]) 2005.

    Google Scholar 

  564. Wisdom, J.: Chaotic motion in the solar system, Icarus, 72 (1987) 241–275.

    Article  ADS  Google Scholar 

  565. Wojtkowski, M..P.: Lyapunov exponents, (in [469]) 2005.

    MATH  Google Scholar 

  566. Wu, J.Y., Cohen, L.B. and Falk, C.X.: Neuronal activity during different behaviors in Aplysia: A distributed organization? Science, 263 (1994) 820–823.

    Article  ADS  Google Scholar 

  567. Yakushevich, L.V.: Nonlinear Physics of DNA, (Wiley, Chichester) 1998.

    MATH  Google Scholar 

  568. Yakushevich, L.V.: DNA solitons, (in [469]) 2005.

    Google Scholar 

  569. Young, J.Z.: Structure of nerve fibers and synapses in some invertebrates, Cold Spring Harbor Symp.Quant.Biol., 4 (1936) 1–6.

    Article  Google Scholar 

  570. Young, L.S.: Horseshoes and hyperbolicity in dynamical systems, (in [469]) 2005.

    Google Scholar 

  571. Yukalov, V.I.: Bose-Einstein condensation, (in [469]) 2005.

    Google Scholar 

  572. Zabusky, N.J.: (editor) Topics in Nonlinear Physics: Proceedings of the Physics Session, (Springer-Verlag, New York) 1967.

    Google Scholar 

  573. Zabusky, N.J.: Solitons and bound states of the time independent Schrödinger equation, Phys.R ev., 168 (1968) 124–128.

    Article  ADS  Google Scholar 

  574. Zabusky, N.J.: Personal communication, January, 2005.

    Google Scholar 

  575. Zabusky, N.J.: Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: History, synergetics, and visiometrics, Chaos, 15 (2005) (in press).

  576. Zabusky, N.J. and Galvin, C.J.: Shallow-water waves, the Korteweg-de Vries equation and solitons, Jour.Fluid Mech., 47 (1971) 811–824.

    Article  ADS  Google Scholar 

  577. Zabusky, N.J. and Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.R ev.L ett., 15 (1965) 240–243.

    Article  ADS  MATH  Google Scholar 

  578. Zakharov, V.E.: Collapse of Langmuir waves, Soviet Phys. JETP, 35 (1972) 908–914.

    ADS  Google Scholar 

  579. Zakharov, V.E., Manakov, S.P., Novikov, S.P. and Pitaevskii, L.P.: Theory of Solitons, (Consultants Bureau, New York) 1984.

    MATH  Google Scholar 

  580. Zakharov, V.E. and Shabat, A.B.: Exact theory of two-dimensional self-modulation of waves in nonlinear media, Soviet Phys.JETP, 34 (1972) 62–69.

    ADS  Google Scholar 

  581. Zaikin, A.N. and Zhabotinsky, A.M.: Concentration wave propagation in twodimensional liquid-phase self-oscillating systems, Nature, 225 (1970) 535–537.

    Article  ADS  Google Scholar 

  582. Zeldovich, Y.B. and Frank-Kamenetsky, D.A.: On the theory of uniform flame propagation, Dokl.A kad.Nauk SSSR, 19 (9) (1938) 693–697.

    Google Scholar 

  583. Zhabotinsky, A.M.: Periodic movement in the oxidation of malonic acid in solution (Investigation of the kinetics of Belousov’s reaction), (in Russian), Biofizika, 9 (1964) 306–311.

    Google Scholar 

  584. Zolotaryuk, A.V.: Polarons, (in [469]) 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, A. The development of nonlinear science. Riv. Nuovo Cim. 27, 1–115 (2004). https://doi.org/10.1393/ncr/i2005-10001-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2005-10001-3

PACS 01.60.+q

PACS 01.70.+w

PACS 05.45.-a

PACS 05.65.+b

Navigation