Skip to main content
Log in

Precision Cosmology

  • Published:
La Rivista del Nuovo Cimento Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bergstrom L. and Goobar A., Cosmology and Particle Astrophysics (Wiley, New York, 1999).

    MATH  Google Scholar 

  2. E. R. Harrisson, Cosmology (Cambridge University Press, Cambridge, 1981,..,1991).

    Google Scholar 

  3. Hawking S. W. and Ellis G. F. R., The Large-Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  4. Kolb E. W. and Turner M. S., The Early Universe (Addison-Wesley, Redwood City, Cal., 1990).

    MATH  Google Scholar 

  5. Liddle A. R. and Lyth D. H., Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  6. Lidsey J. E., Wands D. and Copeland E. J., “Superstring cosmology”, Phys. Rep., 337 (2000) 343 [hep-th/9909061].

    Article  ADS  MathSciNet  Google Scholar 

  7. Linde A., Particle Physics and Inflationary Cosmology (Harwood, New York, 1990).

    Book  Google Scholar 

  8. Lyth D. H. and Riotto A., “Particle physics models of inflation and the cosmological density perturbation”, Phys. Rep., 314 (1999) 1 [hep-ph/9807278].

    Article  ADS  MathSciNet  Google Scholar 

  9. Padmanabhan T., Structure Formation in the Universe (Cambridge University Press, Cambridge, 1993), pp. 353–381, Ch. 10.

    Google Scholar 

  10. Peacock J. R., Cosmological Physics (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  11. Peebles P. J. E., Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).

    MATH  Google Scholar 

  12. General Cosmolog. Site.–N. Wright’s cosmology tutorial http://www.astro.ucla.edu/~wright/cosmolog.htm–MAP satellite introduction to cosmology http://map.gsfc.nasa.gov/muni.html–J. Cohn, M. White’s What is theoretical Cosmology http://astron.berkeley.edu/~jcohn/tcosmo.html The key papers of Precision Cosmology.

  13. Albrecht A. and Steinhardt P. J., “Cosmology For Grand Unified Theories With Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett., 48 (1982) 1220.

    Article  ADS  Google Scholar 

  14. Devlin M. J. et al., “A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400”, Bull. Am. Astron. Soc., 31 (1999) 1457.

    ADS  Google Scholar 

  15. Garnavich P. M. et al. [Hi-z Supernova Team Collaboration], “Constraints on Cosmological Models from HST Observations of High-z Supernovae.” [astro-ph/9710123], Astrophys. J., 493 (1998) L53.

    Article  ADS  Google Scholar 

  16. Garnavich P. M. et al. [Hi-z Supernova Team Collaboration], “Supernova Limits on the Cosmic Equation of State.” [astro-ph/9806396], Astrophys. J., 509 (1998) 74.

    Article  ADS  Google Scholar 

  17. Guth A. H., “The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problems”, Phys. Rev. D, 23 (1981) 347.

    Article  ADS  MATH  Google Scholar 

  18. Lange A. E. et al., “First Estimations of Cosmological Parameters From BOOMERANG”, astro-ph/0005004.

  19. Liddle A. R., Lyth D. H., Viana P. T. and White M., “Cold dark matter models with a cosmological constant”, Mon. Not. R. Astron. Soc., 282 (1996) 281 [astro-ph/9512102].

    Article  ADS  Google Scholar 

  20. Lightman A. P., “Double Compton Emission in Radiation Dominated Thermal Plasma”, Astrophys. J., 244 (1981) 392.

    Article  ADS  Google Scholar 

  21. Linde A. D., “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems”, Phys. Lett. B, 108 (1982) 389.

    Article  ADS  Google Scholar 

  22. Melchiorri A. et al., “A Measurement of Ω from the North American Test Flight of Boomerang”, astro-ph/9911445, Astrophys. J., 536 (1999) L63.

    Article  ADS  Google Scholar 

  23. Netterfield C. B. et al., “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background” [astro-ph/0104460].

  24. Perlmutter S. et al. [Supernova Cosmology ProjectCollaboration], “Measurements of the Cosmological Parameters Omega and Lambda from the First 7 Supernovae at z > 0.35.” [astro-ph/9608192], Astrophys. J., 483 (1997) 565.

    Article  ADS  Google Scholar 

  25. Perlmutter S. et al. [Supernova Cosmology ProjectCollaboration], “Discovery of a Supernova Explosion at Half the age of the Universe and its Cosmological Implications.” [astro-ph/9712212], Nature, 391 (1998) 51.

    Article  ADS  Google Scholar 

  26. Perlmutter S. et al. [Supernova Cosmology ProjectCollaboration], “Measurements of Omega and Lambda from 42 High-z Supernovae” [astro-ph/9812133], Astrophys. J., 517 (1999) 565.

    Article  ADS  Google Scholar 

  27. Pryke C. et al., “Cosmological parameter extraction from the first season of observations with DASI”, Astrophys. J., 568 (2002) 46 [astro-ph/0104490].

    Article  ADS  Google Scholar 

  28. Ratra B., Stompor R., Ganga K., Rocha G., Sugiyama N. and Gorski K. M., “CMB Anisotropy Constraints on Open and Flat-Lambda CDM Cosmogonies from UCSB South Pole, ARGO, MAX, White Dish, and SuzIE Data”, Astrophys. J., 517 (1999) 549 [astro-ph/9901014].

    Article  ADS  Google Scholar 

  29. Riess A. G. et al. [Hi-z Supernova Team Collaboration], “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J., 116 (1998) 1009 [astro-ph/9805201].

    Article  ADS  Google Scholar 

  30. Schmidt B. P. et al. [Hi-z Supernova Team Collaboration], “TheHigh-z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe using SNIa” [astro-ph/9805200], Astrophys. J., 507 (1998) 46.

    Article  ADS  Google Scholar 

  31. Smoot G. F., “Structure in the COBE DMR first year maps”, Astrophys. J., 396 (1992) L1.

    Article  ADS  Google Scholar 

  32. Stompor R. et al., “Cosmological implications of the MAXIMA-I high resolution cosmic microwave background anisotropy measurement” [astro-ph/0105062].

  33. Tegmark M., “Cosmological constraints from current CMB and SN 1a data: a brute force 9 parameter analysis”, Astrophys. J., 514 (1999) L69 [astro-ph/9809201].

    Article  ADS  Google Scholar 

  34. Turner M. S., “Ten Things Everyone Should Know About Inflation”, in Generation of Cosmological Large-scale Structure, edited by Schramm D. N. (Kluwer, Dordrecht, 1997), astro-ph/9704062.

    Google Scholar 

  35. Zel’dovich Y. B. and Starobinskij A. A., Sov. Astron. Lett, 10 (1984) 135.

    ADS  Google Scholar 

  36. Abbott L. and Schaefer R. K., “A general, gauge-invariant analysis of the cosmic microwave anisotropy”, Astrophys. J., 308 (1986) 546.

    Article  ADS  Google Scholar 

  37. Abbott L. F. and Wise M. B., “Large-scale anisotropy of the microwave background and the amplitude of energy density fluctuations in the early universe”, Astrophys. J., 282 (1984) L47.

    Article  ADS  Google Scholar 

  38. Abbott L. F. and Wise M., “Gauge Invariant Cosmological Fluctuations of Uncoupled Fluids”, Nucl. Phys. B, 244 (1984) 541.

    Article  ADS  Google Scholar 

  39. Abel T., Bryan G. L. and Norman M. L., “The Formation and Fragmentation of Primordial Molecular clouds”, astro-ph/0002135, Astrophys. J., 540 (2000) 39.

    Article  ADS  Google Scholar 

  40. Abel T., Bryan G. L. and Norman M. L., “The Formation of the First Star in the Universe”, 2001, astro-ph/0112088.

    Google Scholar 

  41. Abramo L. R., Brandenberger R. H. and Mukhanov V. F., “The energy-momentum tensor for cosmological perturbations”, [gr-qc/9704037], Phys. Rev. D, 56 (1997) 3248.

    Article  ADS  Google Scholar 

  42. Aghanim N., Desert F. X., Puget J. L. and Gispert R., “Ionization by early quasars and cosmic microwave background anisotropies”, Astron. Astrophys., 311 (1996) 1, astro-ph/9811054.

    ADS  Google Scholar 

  43. Aguirre A. N., “Dust Versus Cosmic Acceleration”, [astro-ph/9811316], Astrophys. J., 512 (1999) L19.

    Article  ADS  Google Scholar 

  44. Aguirre A. N., “Intergalactic Dust and Observations of Type Ia Supernovae” [astro-ph/9904319], Astrophys. J., 525 (1999) 583.

    Article  ADS  Google Scholar 

  45. Aguirre A. N. and Haiman Z., “Cosmological Constant or Intergalactic Dust? Constraints from the Cosmic Far Infrared Background”, astro-ph/9907039.

  46. Albrecht A., Battye R. and Robinson J., “The case against scaling defect models of cosmic structure formation”, Phys. Rev. Lett., 79 (1997) 4736.

    Article  ADS  Google Scholar 

  47. Albrecht A. and Skordis C., “Phenomenology of a realistic accelerating universe using only Planck-scale physics”, astro-ph/9908085.

  48. Albrecht A., “Coherence and Sakharov Oscillations in the Microwave Sky”, Proceedings of the XXXIst Rencontre de Moriond, Microwave Background Anisotropies, edited by Bouchet F. et al., astro-ph/9612015 (1996).

    Google Scholar 

  49. Albrecht A., Coulson D., Ferreira P. and Magueijo J., “Causality, randomness, and the microwave background”, Phys. Rev. Lett., 76 (1996) 1413, astro-ph/9505030.

    Article  ADS  Google Scholar 

  50. Albrecht A. and Steinhardt P. J., Phys. Rev. Lett., 48 (1982) 1220.

    Article  ADS  Google Scholar 

  51. Alcock C. and Paczynski B., Nature, 281 (1979) 358.

    Article  ADS  Google Scholar 

  52. Alpher R. A., Bethe H. and Gamow G., “The origin of chemical elements”, Phys. Rev., 73 (1948) 803.

    Article  ADS  Google Scholar 

  53. Amendola L., “Scaling solutions in general non-minimal coupling theories”, Phys. Rev. D, 60 (1999) 043501 [astro-ph/9904120].

    Article  ADS  Google Scholar 

  54. Anderson G. W. and Carroll S. M., “Dark matter with time-dependent mass”, astro-ph/9711288.

  55. Antoniadis I., Phys. Lett. B, 246 (1990) 377.

    Article  ADS  Google Scholar 

  56. Arkani-Hamed N., Dimopoulos S. and Dvali G., “The Hierarchy Problem and New Dimensions at a Millimeter”, [hep-ph/9803315], Phys. Lett. B, 429 (1998) 263.

    Article  ADS  MATH  Google Scholar 

  57. Arkani-Hamed N. et al., “Phenomenology, Astrophysics and Cosmology of theories with Submillimeter Dimensions and TeV Scale Quantum Gravity”, Phys. Rev. D, 59 (1999) 086004.

    Article  ADS  Google Scholar 

  58. Avellino P. P. et al., “The ΛCDM Limit of the Generalized Chaplygin Gas Scenario”, astro-ph 0307427, 24 July 2003.

    Google Scholar 

  59. Axelrod T. S., 1980 PhD. Thesis, California University at Santa Cruz.

  60. Bahcall N., Ostriker J. P., Perlmutter S. and Steinhardt P. J., “The Cosmic Triangle: Revealing the State of the Universe”, [astro-ph/9906463], Science, 284 (1999) 1481.

    Article  ADS  Google Scholar 

  61. Bahcall N. A. and Fan X., “A light weight Universe”, [astro-ph/9804082], Publ. Nat. Acad. Sci., 95 (1998) 5956.

    Article  ADS  Google Scholar 

  62. Bahcall N. A., Lubin L. M. and Dorman V., “Where is the Dark Matter?” [astro-ph/9506041], Astrophys. J., 447 (1995) L81.

    Article  ADS  Google Scholar 

  63. Bahcall N. A. and Fan X., “The Most Massive Distant Clusters: Determining Omega and Sigma-8” [astro-ph/9803277], Astrophys. J., 504 (1998) 1.

    Article  ADS  Google Scholar 

  64. Bahcall N. A., Fan X. and Cen R., “Constraining Omega with Cluster Evolution”, [astro-ph/9706018], Astrophys. J., 485 (1998) L53.

    Article  ADS  Google Scholar 

  65. Bahcall J. and Wolf R. A., Astrophys. J., 152 (1968) 701.

    Article  ADS  Google Scholar 

  66. Ballinger W. E., Peacock J. A. and Heavens A. F., “Measuring the Cosmological Constant with redshift surveys”, [astro-ph/9605017], Mon. Not. R. Astron. Soc., 282 (1996) 877.

    Article  ADS  Google Scholar 

  67. Banday A. J., Zaroubi S. and Gorski K. M., “On the Non-Gaussianity Observed in the COBE-DMR Sky Maps”, Astrophys. J., 533 (2000) 575, astro-ph/9908070.

    Article  ADS  Google Scholar 

  68. Banday A. J. et al., “Non-cosmological signal contributions to the COBE DMR 4 year sky maps”, Astrophys. J., 468 (1996) L85, astro-ph/9601064.

    Article  ADS  Google Scholar 

  69. Banks T., Dine M. and Seiberg N., “Irrational Axions as a solution of the Strong CP Problem in an Eternal Universe”, [hep-th/9109040], Phys. Lett. B, 273 (1991) 105.

    Article  ADS  Google Scholar 

  70. Banks T., “M-theory and cosmology, Les Houches Lectures” 1999; [hep-th/9911067].

    Google Scholar 

  71. Banks T., “SUSY Breaking, Cosmology, Vacuum Selection and the Cosmological Constant in String Theory”, hep-th/9601151.

  72. Banks T., Dine M. and Nelson A., “Constraints on theories with large extra dimensions”, JHEP, 9906 (1999) 014 [hep-th/9903019].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Bardeen J. M., “Gauge-invariant cosmological perturbations”, Phys. Rev. D, 22 (1980) 1882.

    Article  ADS  MathSciNet  Google Scholar 

  74. Barkana R. and Loeb A., “In the beginning: The First Sources of Light and the Reionization of the Universe”, Phys. Rep., 349 (2001) 125.

    Article  ADS  Google Scholar 

  75. Barreiro T., Copeland E. J. and Nunes N. J., “Quintessence arising from exponential potentials”, (KK) astro-ph/9910214.

  76. Barrow J. D., “Observational limits on the time evolution of extra spatial dimensions”, Phys. Rev. D, 35 (1987) 1805.

    Article  ADS  Google Scholar 

  77. Barrow J. D., Sandvik H. B. and Magueijo J., “The behaviour of Varying. Alpha Cosmologies”, astro-ph/0109414, Phys. Rev. D, 65 (2002) 3504.

    Google Scholar 

  78. Barrow J. D. and Tipler F. J., The Anthropic Cosmological Principle (Clarendon, Oxford, 1986).

    Google Scholar 

  79. Bartlett J., “The Standard Cosmological Model and CMB Anisotropies”, Course given at the International School of Space Science: 3K Cosmology, held in L’Aquila, Italy, September 1998, astro-ph/9903260, (1999).

    Google Scholar 

  80. Bartlett J., Blanchard A., LeDour M., Douspis M. and Barbosa D., “Constraints on Cosmological Parameters from Existing CMB Data” astro-ph/9804158.

  81. Battistelli E. S., De Petris M., Lamagna L., Melchiorri F., Palladino E., Savini G., Cooray A., Melchiorri A., Rephaeli Y. and Shimon M., “Cosmic Microwave Background Temperature at Galaxy Clusters” Astrophys. J., 580 (2002) L101

    Article  ADS  Google Scholar 

  82. Battistelli E. S., De Petris M., Lamagna L., Melchiorri F., Palladino E., Savini G., Cooray A., Melchiorri A., Rephaeli Y. and Shimon M., “Cosmic Microwave Background Temperature Evolution by Sunyaev-Zel’dovich Effect Observations”, Memorie della Società Astronomica Italiana, Vol. 74 (2003) p. 316.

    ADS  Google Scholar 

  83. Battye R. A., Bucher M. and Spergel D., “Domain wall dominated universes”, astro-ph/9908047.

  84. Becker R. H. et al., “Evidence for Reionization at z ~ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar”, astro-ph/0108097, Astron. J., 122 (2001) 2850.

    Article  ADS  Google Scholar 

  85. Benakli K., “Phenomenology of low quantum gravity scale models”, Phys. Rev. D, 60 (1999) 104002 [hep-ph/9809582].

    Article  ADS  MathSciNet  Google Scholar 

  86. Bennett C., Turner M. and White M., “The Cosmic Rosetta Stone”, Phys. Today, 50 November issue (1997) 32, http://astron.berkeley.edu/~mwhite/rosetta/index.html.

  87. Bennett C. L. et al., “4-Year COBE DMR Cosmic Microwave Background Observations: Maps and, Basic Results 1996”, Astron. J. Lett., 464 (1996) L1, astro-ph/9601067.

    Article  ADS  Google Scholar 

  88. Bennett C. L. et al., “First Year WMAP Observations: Preliminary Maps and Basic Results”, 2003, astro-ph/0302207.

    Google Scholar 

  89. Benoˆit A. et al., “Cosmological constraints from Archeops”, Astron. Astrophys., 399 (2003) L25, astro-ph/0210306.

    Article  ADS  Google Scholar 

  90. Bento M. C. and Bertolami O., “Compactification, vacuum energy and quintessence”, Gen. Rel. Grav., 31 (1999) 1461, [gr-qc/9905075].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Bergstrom L., “Non-Baryonic Dark matter Observational Evidence and Detection Methods”, Rep. Prog. Phys., 63 (2000) 793.

    Article  ADS  Google Scholar 

  92. Bertolami O. and Martins P. J., “Non-minimal coupling and quintessence”, gr- qc/9910056.

  93. Blanton M. R. et al., “Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey”, Astron. J., 125 (2003) 2348.

    Article  ADS  Google Scholar 

  94. Blasi P., Dick R. and Kolb E. W., “Ultra-High Energy Cosmic Rays: The Annihilation of Super-Heavy Relics” astro-ph/0111531.

  95. Blanton M. R. et al., “The Luminosity Function of Galaxies in SDSS Commissioning Data”, Astron. J., 121 (2001) 2358.

    Article  ADS  Google Scholar 

  96. Binetruy P., Deffayet C. and Langlois D., “Non-conventional cosmology from a brane-universe”, hep-th/9905012.

  97. Binetruy P., “Models of dynamical supersymmetry breaking and quintessence”, Phys. Rev. D, 60 (1999) 063502, [hep-ph/9810553].

    Article  ADS  Google Scholar 

  98. Birkinshaw M., “The Sunyaev-Zel’dovich Effect”, Phys. Rep., 310 (1999) 97, astro- ph/9808050.

    Article  ADS  MATH  Google Scholar 

  99. Bludman S. A. and Ruderman M. A., “Induced cosmological constant above the phase transition restoring the broken symmetry”, Phys. Rev. Lett., 38 (1977) 255.

    Article  ADS  Google Scholar 

  100. Bond J. R., Jaffe A. H. and Knox L., “Estimating the power spectrum of the cosmic microwave background”, Phys. Rev. D, 57 (1998) 2117, astro-ph/9708203.

    Article  ADS  Google Scholar 

  101. Bond J. R., “Cosmic Microwave Background Overview”, Class. Quant. Grav., 15 (1998) 2573.

    Article  ADS  MATH  Google Scholar 

  102. Bond J. R. and Efstathiou G., “Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter”, Astrophys. J., 285 (1984) L45.

    Article  ADS  Google Scholar 

  103. Bond J. R. and Efstathiou G., “The statistics of cosmic background radiation fluctuations”, Mon. Not. R. Astron. Soc., 226 (1987) 655.

    Article  ADS  Google Scholar 

  104. Bond J. R., Efstathiou G. and Tegmark M., “Forecasting cosmic parameter errors from microwave background anisotropy experiments”, Mon. Not. R. Astron. Soc., 291 (1997) L33, astro-ph/9702100.

    ADS  Google Scholar 

  105. Bond J. R., Jaffe A. H. and Knox L., “Radical Compression of Cosmic Microwave Background Data”, Astrophys. J., 533 (2000) 19, astro-ph/9808264.

    Article  ADS  Google Scholar 

  106. Bond J. R. et al., “The Quintessential CMB, Past and Future”, astro-ph/0011379; Cosmology and Particle Physics, CAPP 2000, held 17-28 July, 2000 at Verbier, Switzerland, edited by R. Durrer, J. Garcia-Bellido and M. Shaposhnikov. AIP Conf. Proc, Vol. 555 (American Institute of Physics, Melville, NY, 2001) p. 263.

    Article  ADS  Google Scholar 

  107. Bond J. R., Crittenden R., Davis R. L., Efstathiou G. and Steinhardt P. J., “Measuring Cosmological Parameters with Cosmic Microwave Background Experiments”, [astro-ph/9309041], Phys. Rev. Lett., 72 (1994) 13.

    Article  ADS  Google Scholar 

  108. Bond J. R., Contaldi C. R. and Pogosyan D., “Cosmic microwave background snapshots: pre-WMAP and post-WMAP”; astro-ph 0310735.

  109. Boomerang experimen. CM. introduction.

  110. Borrill J., “The Challenge of Data Analysis For Future CMB Observations”, astro-ph/9903204.

  111. Bottani S., de Bernardis P., de Petris M., Masi S., Melchiorri B., Melchiorri F. and Tanzilli P., “Cosmic background anisotropies in the millimetric region” in The Infrared and Submillimeter Sky after COBE, Proceedings of the NATO Advanced Study Institute, Les Houches, France, March 20-30, edited by Signore M., Dupraz C. (Kluwer Academic Publishing, Dordrecht, 1991) pp. 345–384

    Google Scholar 

  112. Bottani S., de Bernardis P., Melchiorri F., “On the origin of the dipole anisotropy as determined by quadrupole measurements”, Astrophys. J. Lett., 384 (1992) L1.

    Article  ADS  Google Scholar 

  113. Boughn S. P. and Jahoda K., “A comparison of the cosmic microwave and cosmic X-ray backgrounds - Constraints on local sources of the fluctuations observed by COBE”, Astrophys. J., 412 (1993) L1.

    Article  ADS  Google Scholar 

  114. Bougleux E. and Galli D., “Lithium hydride in the early universe and in protogalactic clouds”, astro-ph/9704287, Mon. Not. R. Astron. Soc., 288 (1997) 638.

    Article  ADS  Google Scholar 

  115. Bracewell R. N. and Conklin E. K., Nature, 219 (1968) 1343.

    Article  ADS  Google Scholar 

  116. Branch D. and Tammann G. A., “Type-IA-Supernovae as standard candles”, Annu. Rev. Astron. Astrophys., 30 (1992) 359.

    Article  ADS  Google Scholar 

  117. Branch D., “Type-Ia Supernovae and the Hubble Constant”, 1998 astro-ph/9801065, Annu. Rev. Astron. Astophys., 36 (1999) 17.

    Article  ADS  Google Scholar 

  118. Branchini E., Plionis M. and Sciama D. W., “Reconstructing Positions and Peculiar Velocities of clusters within 25000 km/s: the Bulk Velocity”, Astrophys. J., 461 (1996) L17.

    Article  ADS  Google Scholar 

  119. Brandenberger R. H., “Particle physics aspects of modern cosmology”, [hep-ph/9701276].

  120. Brax P. and Martin J., “Quintessence and supergravity.”, [astro-ph/9905040], Phys. Lett. B, 468 (1999) 40.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Bridle S. L. et al., “Cosmological parameters from cluster abundances,CMB and IRAS”, [astro-ph/9903472], Mon. Not. R. Astron. Soc., 310 (1999) 565.

    Article  ADS  Google Scholar 

  122. Bromley B. C. and Tegmark M., “Is the Cosmic Microwave Background Really Non-Gaussian?”, Astrophys. J. Lett., 524 (1999) L79, astro-ph/9904254.

    Article  ADS  Google Scholar 

  123. Bromm V. and Loeb A., “The First Sources of Light”, astro-ph/0301406 (2003).

  124. Bromm V., Coppi P. S. and Larson R. B., “Forming the First Stars in the Universe: The Fragmentation of Primordial Gas”, astro-ph/9910224, Astrophys. J., 527 (1999) L5.

    Article  ADS  Google Scholar 

  125. Bromm V., Coppi P. S. and Larson R. B., “The Formation of the First Stars The Primordial I. Star Forming Cloud”, astro-ph/0102503 (2001).

    Google Scholar 

  126. Bruscoli M. et al., “CMB anisotropies due to feedback-regulated inhomogeneous reionization”, astro-ph/9911467.

  127. Bucher M, and Spergel D. N., “Is the dark matter a solid?”, Phys. Rev. D, 60 (1999) 043505 [astro-ph/9812022].

    Article  ADS  Google Scholar 

  128. Bunn E. F., Liddle A. and White M., “Four-year COBE normalization of inflationary cosmologies”, Phys. Rev. D, 54 (1996) 5917, astro-ph/9607038.

    Article  ADS  Google Scholar 

  129. Bunn E. F. and White M., “The Four-Year COBE Normalization and Large-Scale Structure”, Astrophys. J., 480 (1997) 6, astro-ph/9607060.

    Article  ADS  Google Scholar 

  130. Bunn E. F., “Calculation of Cosmic Background Radiation Anisotropies and Implications”, astro-ph/9607088, Proceedings of the 1996 NATO Advanced Study Institute on: The Cosmic Background Radiation, edited by Lineweaver C. et al. (Kluwer Academic Publishing, Dordrecht, 1996).

    Google Scholar 

  131. Burbidge G., “Physical Cosmology”, edited by Blanchard, Celnikier et al. (Editions Frontiers, Paris, 1990), p. 53

  132. Burbidge G., Hoyle F., Astrophysiker, Kosmologer, Querdenker. Teil 3: Kosmologie nach 1965; Sterne und Weltraum (ISSN 0039-1263), Jahrgang 42, Nr. 3, (2003) p. 34–40.

    Google Scholar 

  133. Burbidge G., “Noncosmological Redshifts”, The Publications of the Astronomical Society of the Pacific, Vol. 113, Issue 786, pp. 899-902.

  134. Burgess C. P., Myers R. C. and Quevedo F., “A naturally small cosmological constant on the brane?”, hep-th/9911164.

  135. Burles S., Nollett K. M. and Turner M. S., “Big-Bang Nucleosynthesis: Linking Inner Space and Outer-Space”, astro-ph/9903300.

  136. Burles S. et al., “Sharpening the predictions of BBN”, [astro-ph/9901157], Phys. Rev. Lett., 82 (1999) 4176.

    Article  ADS  Google Scholar 

  137. Caldwell R. R., “A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state”; astro-ph/9908168, Phys. Lett. B, 545 (2002) 23.

    Article  ADS  Google Scholar 

  138. Caldwell R. R. and Kamionkowski M., “Echos from the Big Bang”, Sci. Am., January issue (2001).

    Google Scholar 

  139. Caldwell R. R., Dave R. and Steinhardt P. J., “Cosmological Imprint of an Energy Component with General Equation-of-State”, Phys. Rev. Lett., 80 (1998) 1582 [astro- ph/9708069].

    Article  ADS  MATH  Google Scholar 

  140. Calmet X. and Fritzch H., “Symmetry Breaking and Time Variation of Gauge Couplings”, hep-ph/0204258, Phys, Lett. B, 540 (2002) 173.

    Article  ADS  Google Scholar 

  141. Carlberg R. G. et al., “Galaxy cluster virial masses and Omega.”, Astrophys. J., 462 (1996) 32.

    Article  ADS  Google Scholar 

  142. Carlberg R. G., Morris S. L., Yee H. K. C. and Ellingson E., “Omega baryon via Oort’s Method”, Astrophys. J., 479 (1997) L19.

    Article  ADS  Google Scholar 

  143. Carlstrom J. E. et al., “Imaging the Sunyaev-Zel’dovich Effect”, astro-ph/9905255.

  144. Carlstrom J. E. et al., “Status of CMB Polarization Measurements from DASI and Other Experiments” in astro-ph/0308478, 27 August 2003.

  145. Carroll S. M., Hoffman M. and Trodden M., “Can dark Energy equation-of-state parameter w be less than -1?” astro-ph/0301273 14 Jan, 2003.

    Google Scholar 

  146. Carroll S. M., “The Cosmological Constant”, Living Reviews in Relativity, Vol. 4, article 1. 2001

  147. Carroll S. M., Kaplinghat, Manoj, “Testing the Friedmann equation: The expansion of the universe during big-bang nucleosynthesis”, Phys. Rev. D, 65 (2002) id. 063507.

  148. Carroll S. M., “Quintessence and the Rest of the World”, [astro-ph/9806099], Phys. Rev. Lett., 81 (1998) 3067.

    Article  ADS  Google Scholar 

  149. Carroll S. M., “TASI lectures: Cosmology for string theorists”, [hep-th/0011110].

  150. Carroll S. M., Press W. H. and Turner E. L., Annu. Rev. Astron. Astrophys., 30 (1992) 499.

    Article  ADS  Google Scholar 

  151. Casimir H. B., Kon. Ned. Akad. Wetensch. Proc, 51 (1948) 793.

    Google Scholar 

  152. Cavaliere A., Danese L., De Zotti G., Astron. Astrophys., 217 (1977) 6.

    ADS  Google Scholar 

  153. Cayon L., Martinez-Gonzalez E. and Sanz J. L., “Gravitational lensing and the cosmic microwave background”, Astrophys. J., 403 (1993) 471.

    Article  ADS  Google Scholar 

  154. Cayon L., Martinez E.-Gonzalez and Sanz J. L., “Does a cosmological constant increase the effect of gravitational lensing on the cosmic microwave background?”, Astrophys. J., 413 (1993) 10.

    Article  ADS  Google Scholar 

  155. Ceccarelli C, Dalloglio G., de Bernardis P., Masi S., Melchiorri B., Melchiorri F., Moreno G. and Pietranera L., “Search for extragalactic backgrounds in the far-infrared” Astrophys. J. Lett., (ISSN 0004-637X) 275 (1983) L39.

    Article  ADS  Google Scholar 

  156. Cen R., “The Universe Was Reionized Twice”, 2002, astro-ph/0210473.

    Google Scholar 

  157. Challinor A. D. and Lasenby A. N., “Cosmic Microwave Background Anisotropies” in “The Cold Dark Matter Model: Covariant and Gauge-invariant Approach”, Astrophys. J., 513 (1999) 1, astro-ph/9804301.

    Article  ADS  Google Scholar 

  158. Challinor A. D. and Lasenby A. N., “Recent developments in the calculation of CMB anisotropies” in “Current Topics in Astrofundamental Physics”, edited by Sanchez N., (Kluwer Academic Publishing, Dordrecht, 1998), astro-ph/9711028.

    Google Scholar 

  159. Charlton J. C. and Turner M. S., Astrophys. J., 313 (1987) 495.

    Article  ADS  Google Scholar 

  160. Cheng Y. N. and Krauss L. M., “Gravitational lensing statistics and constraints on the cosmological constant revisited”, astro-ph/9810393.

  161. Chernin A. D., “Cosmic Vacuum and the ‘flatness problem’ in the Concordant Model”, New Astron., 8 (2003) 79.

    Article  ADS  Google Scholar 

  162. Chiba M. and Yoshii Y., “New limits on a Cosmological Constant from Statistics of gravitational limits”, [astro-ph/9808321], Astrophys. J., 510 (1999) 42.

    Article  ADS  Google Scholar 

  163. Chiba T., Sugiyama N. and Nakamura T., “Observational tests of x-matter models”, Mon. Not. R. Astron. Soc, 301 (1998) 72, [astro-ph/9806332].

    Article  ADS  Google Scholar 

  164. Chiba T., “Quintessence, the gravitational constant, and gravity”, Phys. Rev. D, 60 (1999) 083508, [gr-qc/9903094].

    Article  ADS  Google Scholar 

  165. Choi K., “String or M theory axion as a quintessence”, hep-ph/9902292.

  166. Chown M., “Afterglow of Creation: from the fireball to the discovery of cosmic ripples”, (University Science Books, Sausalito, CA, 1996) (E).

    Google Scholar 

  167. Ciardi B., Ferrara A. and White S. D. M., “Early Reionization by the First Galaxies”, astro-ph/0302451, 2003.

    Book  Google Scholar 

  168. Coble K., Dodelson S. and Frieman J. A., “Dynamical Lambda models of structure formation”, Phys. Rev. D, 55 (1997) 1851 [astro-ph/9608122].

    Article  ADS  Google Scholar 

  169. Cohen A. G., Kaplan D. B. and Nelson A. E., “Effective Field Theory, Black Holes and the Cosmological Constant”, [hep-th/9803132], Phys. Rev. Lett., 82 (1999) 4971.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  170. Cohn J. D., “Living with Lambda”, Astrophys. Space Sci., 259 (1998) 213 [astro- ph/9807128].

    Article  ADS  MATH  Google Scholar 

  171. J. Cohn’s CMB web links http://astron.berkeley.edu/~jcohn/chaut/cmb_refs.html.

  172. Cole S. and Efstathiou G., “Gravitational lensing of fluctuations in the microwave background radiation”, Mon. Not. R. Astron. Soc., 239 (1989) 195.

    Article  ADS  Google Scholar 

  173. Coleman S., Nucl. Phys. B, 310 (1988) 643.

    Article  ADS  Google Scholar 

  174. Colgate S. A. and McKee C, “Early Supernova Luminosity”, Astrophys. J., 157 (1969) 623.

    Article  ADS  Google Scholar 

  175. Combes F. and Wiklind T., “Highly Redshifted Radio Lines” ASP Conf. Ser., 156 (1999) 210.

    ADS  Google Scholar 

  176. Colless M. et al., “The 2dF Galaxy Redshift Survey: Full data Release”, (2003), astro-ph 0306581.

    Google Scholar 

  177. Condon J. J. and HarwitM., Phys. Rev. Lett., 20 (1968) 1309 [corrected in 21 (1968) 58].

    Article  ADS  Google Scholar 

  178. Conklin E. K. and Bracewell R. N., Nature, 216 (1967) 777

    Article  ADS  Google Scholar 

  179. Conklin E. K., “Anisotropy and Inhomogeneity in the Cosmic Background Radiation”; Thesis (Ph.D.)- Stanford University, 1969. Source: Dissertation Abstracts International, Vol. 30-12, Section: B, page: 5340.

    Google Scholar 

  180. Conklin E. K., Nature, 222 (1969) 971.

    Article  ADS  Google Scholar 

  181. Cooray A. R., Quashnock J. M. and Miller M. C., “A Lower Limit on Omega-Lambda Using Gravitational Lensing in the Hubble Deep Field”, [astro-ph/9806080], Astrophys. J., 511 (1999) 562.

    Article  ADS  Google Scholar 

  182. Cooray A., “Large Scale Pressure Fluctuations and Sunyaev-Zel dovich Effect”, astro- ph/0005287, (2000).

    Google Scholar 

  183. Cooray A. R. and Huterer D., “Gravitational Lensing as a Probe of Quintessence”, astro-ph/9901097.

  184. Copeland E., “Quintessence”, in On the Nature of Dark Energy, edited by Brax P., Martin J., Uzan P. (Frontier Group, 2002) p. 101.

    Google Scholar 

  185. Corey B. E., “The dipole anisotropy of the cosmic microwave background at a wavelength of 1.6 cm”, Ph.D. thesis Princeton University, 1978.

    Google Scholar 

  186. Corey B. E. and Wilkinson D. T., “A measurement of the cosmic microwave background anisotropy at 19GHz”, Bull. Am. Astron. Soc, 8 (1976) 351.

    ADS  Google Scholar 

  187. Cornish N. J., “Using the Acoustic Peak to measure Cosmological Parameters”, in Astro-Ph 0005261 of 27 July 2000; Phys. Rev. D, 63 (2001) id. 027302.

  188. Cornish N., Spergel D. and Starkman G., “Circles in the Sky: Finding Topology with the Microwave Background Radiation”, Class. Quant. Grav., 15 (1998) 2657, astro- ph/9801212.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Coulson D. et al., “Microwave anisotropies from cosmic defects”, Nature, 368 (1994) 27.

    Article  ADS  Google Scholar 

  190. Covi L. and Lyth D. H., “Running-mass models of inflation, and their observational constraints”, Phys. Rev. D, 59 (1999) 063515, hep-ph/9809562.

    Article  ADS  Google Scholar 

  191. Cremmer E., Ferrara S., Kounnas C. and Nanopoulos D. V., “Naturally Vanishing Cosmological Constant in N = 1 Supergravity”, Phys. Lett. B, 133 (1983) 61.

    Article  ADS  MathSciNet  Google Scholar 

  192. Crittenden R., Bond J. R., Davis R., Efstathiou G. and Steinhardt P., “Imprint of gravitational waves on the cosmic microwave background”, Phys. Rev. Lett., 71 (1993) 324, astro-ph/9303014.

    Article  ADS  Google Scholar 

  193. Crittenden R. G., Coulson D. and Turok N. G., “Temperature-polarization correlations from tensor fluctuations”, Phys. Rev. D, 52 (1995) 5402, astro-ph/9411107.

    Article  ADS  Google Scholar 

  194. Crittenden R., Davis R. and Steinhardt P., “Polarization of the Microwave Background Due to Primordial Gravitational Waves”, Astrophys. J., 417 (1993) L13, astro-ph/9306027.

    Article  ADS  Google Scholar 

  195. Crotty P., Lesgourgues J. and Pastor S., “Measuring the cosmological background of relativistic particles with WMAP”, 2003, astro-ph/0302337.

    Google Scholar 

  196. Cyburt R. H., Fields B. D. and Olive K. A., “Primordial Nucleosynthesis with CMB: Probing the Early Universe and Light Element Astrophysics”, Astropart. Phys., 17 (2002) 87.

    Article  ADS  Google Scholar 

  197. Dalgarno A. and Lepp S., “Chemistry in the Early Universe”, in Astrochemistry, edited by Vardya and Tarafdar (Reidel, Dordrecht, 1987) p. 109.

    Chapter  Google Scholar 

  198. Dalgarno A., Kirby K. and Stancil P. C., “The Radiative Association of Li+ and H, Li and H+, and Li and H”, Astrophys. J., 458 (1996) 397.

    Article  ADS  Google Scholar 

  199. Dall’Oglio G., Fonti S., Melchiorri B., Melchiorri F. and Natale V., “Measurements of the CBR through the 1.0-1.4 mm atmospheric windows”, Phys. Rev. D, 13 (1976) 1187.

    Article  ADS  Google Scholar 

  200. Damour T., “String theory cosmology and varying constants”, gr-qc/0210059, Astrophys. Space Sci., 283 (2003) 445.

    Article  ADS  Google Scholar 

  201. Damour T. and Nordtvedt K., “Tensor scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48 (1993) 3436.

    Article  ADS  MathSciNet  Google Scholar 

  202. Damour T. and Polyakov A. M., “The String Dilaton and a Least Coupling Principle”, hep-th/9401069, Nucl. Phy. B, 423 (1994) 532.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  203. da Silv A. C., “Hydrodynamical simulations of the Sunyaev-Zel dovich effect: the kinetic effect” et al., astro-ph/0011187.

  204. Davies R. D., Lasenby A. N., Watson R. A. et al, Nature, 236 (1987) 462.

    Article  ADS  Google Scholar 

  205. de Bernardis P. et al., “Search for LiH lines at high redshifts”, Astron. Astrophys., 269 (1993) 1.

    ADS  Google Scholar 

  206. de Bernardis P. et al., Astron. Astrophys., 271 (1993) 683.

    ADS  Google Scholar 

  207. de Bernardis P. et al., “Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology” astro- ph/0105296, Astrophys. J., 564 (2002) 559.

    Article  ADS  Google Scholar 

  208. Dekel A., “Dynamics of cosmic flows”, Annu. Rev. Astron. Astrophys., 32 (1994) 371, astro-ph/9401022.

    Article  ADS  Google Scholar 

  209. Dekel A., “Cosmological Implications of Large-Scale Flows”, astro-ph/9705033.

  210. Dekel A., Burstein D. and White S. D., “Measuring Omega”, astro-ph/9611108.

  211. Delabrouille J., “Issues and methods for CMB anisotropy data reduction”, astro- ph/0011444.

  212. Demianski M., de Ritis R., Marino A. A. and Piedipalumbo E., “Approximate angular diameter distance in locally inhomogeneous universe with non-zero cosmological constantr” astro-ph/0310830, October 29, 2003.

    MATH  Google Scholar 

  213. de Oliveira-Costa A. and Tegmark M. (Editors), Microwave Foregrounds (ASP, San Francisco, 1999).

    Google Scholar 

  214. Refregier A., “Overview of Secondary Anisotropies in the CMB” in Microwave Foregrounds, edited by de Oliveira-Costa A. and Tegmark M. (ASP, San Francisco, 1999), astro-ph/9904235.

    Google Scholar 

  215. de Oliveiera-Costa A., Smoot G. F. and Starobinsky A. A., “Can the lack of symmetry in the COBE/DMR maps constrain the topology of the universe?”, Astrophys. J., 468 (1996) 457, astro-ph/9510109.

    Article  ADS  Google Scholar 

  216. De Petris M., D’Alba L., Lamagna L., Melchiorri F., Orlando A., Palladino E., Rephaeli Y., Colafrancesco S., Kreysa E. and Signore M., “MITO measurements of the S-Z Effect in the COMA cluster of galaxies.”, 2002, astro-ph/0203303, Astrophys. J., 574 (2002) L119.

    Article  ADS  Google Scholar 

  217. de Ritis R., Marino A. A., Rubano C. and Scudellaro P., “Tracker fields from nonminimally coupled theory”, hep-th/9907198.

  218. de Sitter W., Proc. Acad. Sci., 19 (1917) 1217; ibidem 20 (1917) 229

    Google Scholar 

  219. de Sitter W., “On the expanding universe and the time-scale”, Mon. Not. R. Astron. Soc, 93 (year?) 628 de Sitter W., “Space, time, and gravitation”, The Observatory, Vol. 39, p. 412-419 (1916)

  220. de Sitter W., “Einstein’s theory of gravitation and its astronomical consequences”, Mon. Not. R. Astron. Soc, 78 (1917) 3

    Article  ADS  Google Scholar 

  221. reprinted in Bernstein J. and Feinberg G. (Editors), Cosmological Constants (Columbia University, N.Y.) 1986, p. 27.

    Google Scholar 

  222. Dienes K. R., Phys. Rev. D, 42 (1990) 2004.

    Article  ADS  MathSciNet  Google Scholar 

  223. Dienes K. R., Phys. Rev. Lett., 65 (1990) 1979.

    Article  ADS  Google Scholar 

  224. Dicke R. H., Peebles P. J. E., Roll P. G. and Wilkinson D. T., “Cosmic Black-Body Radiation”, Astrophys. J., 142 (1965) 414.

    Article  ADS  Google Scholar 

  225. Dine M., “Seeking the ground state of string theory”, Prog. Theor. Phys. Suppl, 134 (1999) 1 [hep-th/9903212].

    Article  ADS  MathSciNet  Google Scholar 

  226. Dine M. and Seiberg N., Phys. Lett. B, 162 (1985) 299.

    Article  ADS  MathSciNet  Google Scholar 

  227. Dodelson S., “Cosmic Microwave Background: Past, Future, and Present”, Int. J. Mod. Phys. A, 15S1 (2000) 765, hep-ph/9912470.

  228. Dodelson S. and Jubas J., “Re-Ionization and its Imprint on the Cosmic Microwave Background”, Astrophys. J., 439 (1995) 503, astro-ph/9308019.

    Article  ADS  Google Scholar 

  229. Dodelson S. and Knox L., “Dark Energy and the CMB”, Phys. Rev. Lett., 84 (2000) 3523, astro-ph/9909454

    Article  ADS  Google Scholar 

  230. Dodelson S., Gates E. I. and Turner M. S., “Cold Dark Matter Models”, Science, 274 (1996) 69 [astro-ph/9603081].

    Article  ADS  Google Scholar 

  231. Dolgov A. D., “Field Model With A Dynamic Cancellation Of The Cosmological Constant”, JETP Lett., 41 (1985) 345.

    ADS  Google Scholar 

  232. Dolgov A. D., “An Attempt To Get Rid of the Cosmological Constant”, in Cambridge 1982, Proceedings, The Very Early Universe, pp. 449–458.

    Google Scholar 

  233. Doroshkevich A. G., Zel’dovich I. B. and Sunyaev R. A., “Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation”, Sov. Astron., 22 (1978) 523.

    ADS  Google Scholar 

  234. Dragone C., “Characteristics of a Broadband Corrugated Feed”, The Bell Tec. J., 56 (1977) 869.

    Article  Google Scholar 

  235. Drell P. S., Loredo T. J. and Wasserman I., “Type Ia Supernovae, Evolution and the Cosmological Constant”, [astro-ph/9905027], Astrophys. J., 530 (2000) 593.

    Article  ADS  Google Scholar 

  236. Dubrovich V., “Molecules of cosmological origin”, Sv. AL, 3 (1977) 128.

    Google Scholar 

  237. Durrer R., “Anisotropies in the Cosmic Microwave Background: Theoretical Foundation”, in astro:ph/9610234, 1996

    MATH  Google Scholar 

  238. Durrer R., Gabrielli A., Joyce M., Sylos Labini F., “Bias and the Power Spectrum beyond the Turnover”, Astrophys. J., 585, Issue 1 (2003) L1

    Article  ADS  Google Scholar 

  239. Durrer R., Novosyadlyj B., Apunevych S., “Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints”, Astrophys. J., 583, Issue 1 (2003) 33

    Article  ADS  Google Scholar 

  240. Durrer R., Kunze K. E., Sakellariadou M., “Particle creation in pre-big-bang cosmology”, New Astron. Rev., 46, Issue 11 (2002) 659

    Article  ADS  Google Scholar 

  241. Durrer R., Vernizzi F., “Adiabatic perturbations in pre- big bang models: Matching conditions and scale invariance”, Phys. Rev. D, 66, Issue 8 (2002) id. 083503

  242. Durrer R., “Physics of Cosmic Microwave Background Anisotropies and Primordial Fluctuations”, Space Sci. Rev., 100, Issue 1/4 (2002) 3

    Article  ADS  Google Scholar 

  243. Trotta R., Riazuelo A., Durrer R., “Cosmic Microwave Background Anisotropies with Mixed Isocurvature Perturbations”, Phys. Rev. Lett., 87, Issue 23 (2001) id. 231301

  244. Durrer R., Kunz M., Melchiorri A., “Reproducing the observed cosmic microwave background anisotropies with causal scaling seeds”, Phys. Rev. D, 63, Issue 8 (2001) id. 081301

  245. Vernizzi F., Melchiorri A., Durrer R., “Cosmic microwave background anisotropies from pre-big bang cosmology”, Phys. Rev. D, 63, Issue 6 (2001) id. 063501.

  246. Dvali G. and Turner M. S., “Dark Energy as a Modification of the Friedmann Equation”, astr-ph/03015210.

  247. Eckmann J.-P., Esa Jrvenp, Maarit Jrvenp, Itamar Procaccia, “On the Fractal Dimension of the Visible Universe”, 2003, astro-ph/0301034.

    Google Scholar 

  248. Efstathiou G. and Bond J. R., “Microwave anisotropy constraints on isocurvature baryon models”, Mon. Not. R. Astron. Soc., 227 (1987) 33.

  249. Efstathiou G. and Bond J. R., “Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies”, Mon. Not. R. Astron. Soc., 304 (1999) 75.

    Article  ADS  Google Scholar 

  250. Eisenstein D. J., Hu W. and Tegmark M., “Cosmic Complementarity: H0 and ΩM from Combining Cosmic Microwave Background Experiments and Redshift Surveys”, Astrophys. J. Lett., 504 (1998) L57, astro-ph/9805239.

    Article  ADS  Google Scholar 

  251. Eisenstein D. J., Hu W. and Tegmark M., “Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys”, Astron. J., 518 (1999) 2, astro-ph/9807130.

    Article  ADS  Google Scholar 

  252. Fabbri R. and Melchiorri F., “How can we measure the extragalactic infrared background”; Astron. Astrophys., 78 (1979) 376.

    ADS  Google Scholar 

  253. Fabbri R., Melchiorri F. and Natale V., Astrophys. Space Sci., 59 (1978) 223.

    Article  ADS  Google Scholar 

  254. Fabbri R., Melchiorri F., Mencaraglia F. and Natale V., “The cosmological deceleration parameter and the Sunyaev-Zel dovich effect”, Astron. Astrophys., 74 (1979) L20.

    ADS  Google Scholar 

  255. Fabbri R., Guidi I., Melchiorri F. and Natale V., “Measurement of the cosmic-background large-scale anisotropy in the millimetric region”, Phys. Rev. Lett., 44 (1980) 1563.

    Article  ADS  Google Scholar 

  256. Fan X. et al., “The Discovery of a Luminous z = 5.80 Quasar from the Sloan Digital Sky Survey”, astro-ph/0005414, Astron. J., 120 (2000) 1167.

    Article  ADS  Google Scholar 

  257. Fields B. D. and Olive K. A., “On the Evolution of Helium in Blue Compact Galaxies”, Astrophys. J., 506 (1998) 177.

    Article  ADS  Google Scholar 

  258. Filippenko A. V., “Optical Spectra of Supernovae”, Annu. Rev. Astron. Astrophys., 35 (1997) 309.

    Article  ADS  Google Scholar 

  259. Filippenko A. V., “Type Ia supernovae: observational overview”, in Thermonuclear Supernovae, edited by Ruiz-Lapente R. et al. (Kluwer, Dordrecht, 1997) pp. 1–32.

    Google Scholar 

  260. Fixsen D. J., Cheng E. S. and Wilkinson D. T., “Large-Scale Anisotropy in the 2.7-K Radiation with a Balloon-Borne Maser Radiometer at 24.5 GHz” Phys. Rev. Lett., 50 (1983) 620.

    Article  ADS  Google Scholar 

  261. Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A. and Wright E. L., “The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set”, Astrophys. J., 473 (1996) 576, astro-ph/9605054.

    Article  ADS  Google Scholar 

  262. Fixsen D. J., Dwek E., Mather J. C, Bennett C. L. and Shafer R. A., “The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations”, Astrophys. J., 508 (1998) 123, astro-ph/9803021.

    Article  ADS  Google Scholar 

  263. Flower D. et al., “The cooling of astrophysical media by HD”, Mon. Not. R. Astron. Soc, 314 (2000) 753.

    Article  ADS  Google Scholar 

  264. Folkes S. et al., “The 2dF Galaxy Redshift Survey: Spectral types and luminosity functions”, Mon. Not. R. Astron. Soc, 308 (1999) 459.

    Article  ADS  Google Scholar 

  265. Forman M., Plan. Space. Sci., 18 (1970) 25.

    Article  ADS  Google Scholar 

  266. Freedman W. L., “Determination of Cosmological Parameters”, astro-ph/9905222.

  267. Friedmann A. A., Z. Phys., 10 (1922) 377.

    Article  ADS  Google Scholar 

  268. Fukugita M., Futamase T. and Kasai M., Mon. Not. R. Astron. Soc, 246 (1990) 24.

    ADS  Google Scholar 

  269. Galli D. and Palla F., “The Chemistry of the Early Universe”, astro-ph/9803314, Astron. Astrophys., 335 (1998) 403.

    ADS  Google Scholar 

  270. Gamow G., “Expanding universe and the origin of elements”, Phys. Rev., 70 (1946) 572.

    Article  ADS  Google Scholar 

  271. Garcia-Bellido J., Liddle A. R., Lyth D. H. and Wands D., “Open universe Grishchuk-Zel dovich effect”, astro-ph 9508003, Phys. Rev. D, 52 (1995) 6750.

    Article  ADS  Google Scholar 

  272. Gawiser E. and Silk J., “The Cosmic Microwave Background Radiation” Phys. Rep., 333-334 (2000) 245, astro-ph/0002044. Review article in David Schramm Memorial Volume of Physics Reports.

  273. Ge J. et al., “A New Measurement of the Cosmic Microwave Background Radiation Temperature at z = 1.97”, astro-ph/9607145, Astrophys. J., 474 (1997) 67.

    Article  ADS  Google Scholar 

  274. Gianturco F., Gori-Giorgi P., “Radiative association of LiH from electronically excited lithium atoms”, Phys. Rev. A, 54 (1996) 4073.

    Article  ADS  Google Scholar 

  275. Glanz J., “Microwave Hump Reveals Flat Universe”, Science January 1, 283 (1999) 21.

    Article  ADS  Google Scholar 

  276. Goldhaber G. et al., “Timescale Stretch Parametrization of TypeIa Supernova B-band Light Curves”, 2001, astro-ph/0104382.

    Google Scholar 

  277. Goldhaber G. et al., “Observation of Cosmological Time Dilation using SNIa as clocks”, 1996, astro-ph/9602124.

    Google Scholar 

  278. Gott J. R., Park M. G. and Lee H. M., Astrophys. J., 338 (1989) 1.

    Article  ADS  Google Scholar 

  279. Gouda N., Sugiyama N. and Sasaki M., “Large Angle Anisotropy of the Cosmic Microwave Background in an Open Universe”, Prog. Theor. Phys., 85 (1991) 1023.

    Article  ADS  Google Scholar 

  280. Gower J. F. R., Scott P. F. and Wills D., Mem. R. Astron. Soc, 71 (1991) 49.

    ADS  Google Scholar 

  281. Griest K. and Kamionkowski M., “Supersymmetric dark matter”, Phys. Rep., 333 (2000) 167.

    Article  ADS  Google Scholar 

  282. Grishchuk L., Class. Quant. Gravity, 10 (1993) 2449.

    Article  ADS  Google Scholar 

  283. Guerra E. J., Daly R. A. and Wan L, “Updated Estimates of Global Cosmological Parameters Determined Using Classical Double Radio Galaxies”, astro-ph/9807249.

  284. Gunn J. E. and Peterson B. A., “On the Density of Neutral Hydrogen in Intergalactic Space”, Astrophys. J., 142 (1965) 1633.

    Article  ADS  Google Scholar 

  285. Haiman Z. and Holder G. P., “The Reionization History at High Redshifts I: Physical Models and New Constraints from CMB Polarization”, 2003, astro-ph/0302403.

    Google Scholar 

  286. Hansen S., Lamagna L. and Melchiorri F., “The SZ effect as a Cosmic Thermometer: the choice of the best operating frequencies” Astrophys. J. Lett. in preparation.

  287. Harkness R. P., in “SN 1987A and Other Supernovae” (ESO, 447, 1991).

    Google Scholar 

  288. Hazard C. and Salpeter E. E., “Discrete Sources and the Microwave Background in Steady-State Cosmologies”, Astrophys. J. Lett., 157 (1969) L87.

    Article  ADS  Google Scholar 

  289. Heavens A., “Probing the microwave background with Planck”, Astron. Geophys., 39 (1998) 5.14 (E).

    Article  Google Scholar 

  290. Heavens A., “Planck Surveyor: Cosmology with the microwave background radiation”, Mod. Astronom., 2 7 (1998) 367 (E).

    Google Scholar 

  291. Heer C. V. and Kohl R. H., Phys. Rev., 174 (1968) 1611.

    Article  ADS  Google Scholar 

  292. Henry P. S., “Isotropy of the 3K Background”, Nature, 231 (1971) 516.

    Article  ADS  Google Scholar 

  293. Herbig T., Lawrence C. R. and Readhead A. C. S., “A measurement of the SZ effect in the COMA cluster of Galaxies”, Astrophys. J. Lett., 449 (1995) 5.

    Article  ADS  Google Scholar 

  294. Hillebrandt W. and Niemeyer J. C., “Type Ia Supernova Explosion Models”, 2000, astro-ph/0006305.

    Book  MATH  Google Scholar 

  295. Hirasawa T., Aizu K. and Taketani M., “Formation of galaxies from hydrogen gas”, Prog. Theor. Phys., 41 (1969) 435.

    Article  Google Scholar 

  296. Ho¨flich P. et al., “Maximum brightness and postmaximum decline of light curves of Type Ia supernovae: a comparison of theory and observations”, Astrophys. J., 472 (1996) L81.

    Article  ADS  Google Scholar 

  297. Hogan C., Kaiser N. and Rees M. J., “Interpretation of anisotropy in the cosmic background radiation”, Philos. Trans. R. Soc. London, Ser. A, 307 (1982) 97.

    Article  ADS  Google Scholar 

  298. Hogan C. J., “Deuterium and Helium Absorption at High Redshift: Mapping the Abundance, Density and Ionization of Primordial Gas”, in 18th Texas Symposium on Relativistic Astrophysics and Cosmology, edited by Olinto et al., (World Scientific, Singapore, 1998) p. 15.

    Google Scholar 

  299. Hogg D. W., Baldry I. K., Blanton M. R. and Eisenstein D. J., “The K Correction”, 2002, astro-ph/0210394.

    Google Scholar 

  300. Hodgson C. D. and Weeks J. R., Experimental Mathematics, 3 (1994) 261.

    Article  MathSciNet  Google Scholar 

  301. Holder G. P. et al., “The Reionization History at High Redshifts II: Estimating the Optical Depth to Thomson Scattering from CMB Polarization”, 2003, astro-ph/0302404.

    Google Scholar 

  302. Hu W., Scott D., Sugiyama N. and White M., “Effect of physical assumptions on the calculation of microwave background anisotropies”, Phys. Rev. D, 52 (1995) 5498, astro-ph/9505043.

    Article  ADS  Google Scholar 

  303. Hu W., “CMB Anisotropies: A Decadal Survey”, (2000), astro-ph/0002520.

    Google Scholar 

  304. Hu W., Bunn E. F. and Sugiyama N., “COBE constraints on baryon isocurvature models”, Astrophys. J., 447 (1995) L59, astro-ph/9501034.

    Article  ADS  Google Scholar 

  305. Hu W., Sugiyama N. and Silk J., “The Physics of Microwave Background Anisotropies”, Nature, 386 (1997) 37, astro-ph/9604166.

    Article  ADS  Google Scholar 

  306. Hu W. and White M., “A CMB polarization primer”, New Astron., 2 (1997) 323, astro-ph/9706147, web: http://www.sns.ias.edu/~whu/polar/webversion/polar.html or http://astron.berkeley.edu/~mwhite/polar/.

    Article  ADS  Google Scholar 

  307. Hu W., Eisenstein D. J., Tegmark M. and White M., “Observationally Determining the Properties of Dark Matter”, Phys. Rev. D, 59 (1999) 023512, astro-ph/9806362.

    Article  ADS  Google Scholar 

  308. Hu W. and Sugiyama N., “Anisotropies in the cosmic microwave background: an analytic approach”, Astrophys. J., 444 (1995) 489, astro-ph/9407093.

    Article  ADS  Google Scholar 

  309. Hu W. and Sugiyama N., “Toward understanding CMB anisotropies and their implications”, Phys. Rev. D., 51 (1995) 2599, astro-ph/9411008.

    Article  ADS  Google Scholar 

  310. Hu W. and White M., “Acoustic Signatures in the Cosmic Microwave Background”, Astrophys. J., 471 (1996) 30, astro-ph/9602019.

    Article  ADS  Google Scholar 

  311. Hu W. and White M., “A New Test of Inflation”, Phys. Rev. Lett., 77 (1996) 1687, astro-ph/9602020.

    Article  ADS  Google Scholar 

  312. Hu W., “Wandering in the Background: A CMB Explorer”, Ph.D. thesis, UC Berkeley, 184 pages, (1995), astro-ph/9508126.

    Google Scholar 

  313. Hu W. and White M., “CMB anisotropies: Total angular momentum method”, Phys. Rev. D, 56 (1997) 596, astro-ph/9702170.

    Article  ADS  Google Scholar 

  314. Hu W., Seljak U., White M. and Zaldarriaga M., “A Complete Treatment of CMB Anisotropies in a FRW Universe”, Phys. Rev. D, 57 (1997) 3290, astro-ph/9709066.

    Article  ADS  Google Scholar 

  315. Hubble E. P., Proc. Natl. Acad. Sci., 15 (1929) 168.

    Article  ADS  Google Scholar 

  316. Hu W. and Dodelson S., “Cosmic Microwave Background Anisotropies”, Annu. Rev. Astron. Astrophys., 1 (2002).

  317. Hu W. T., “Wandering in the Background: a Cosmic Mirowave Background Explorer” Ph.Thesis D., Berkeley, 1992.

    Google Scholar 

  318. Hui L. and Haiman Z., “The Thermal Memory of Reionization History”, 2003, astro-ph/0302439.

    Book  Google Scholar 

  319. Hui L., Stebbins A. and Burles S., “A Geometrical Test of the Cosmological Energy Contents using the Lyman-alpha Forest”, Astrophys. J., 511 (1999) L5, [astro-ph/9807190].

    Article  ADS  Google Scholar 

  320. Hu¨terer D. and Turner M., “Probing the dark energy: methods and startegies”, astro-ph/0012510, Phys. Rev. D, 64 (2001) 123537.

    Article  ADS  Google Scholar 

  321. Itoh N., Kohyama Y. and Nozawa S., “Relativistic Corrections to the S-Z Effect for Clusters of Galaxies”, Astrophys. J., 502 (1998) 7.

    Article  ADS  Google Scholar 

  322. Ivanchik A. et al., “Does the proton-to-electron mass ratio vary in the course of cosmological evolution?”, astro-ph/0210299, Astrophys. Space Sci., 283 (2003) 583.

    Article  ADS  Google Scholar 

  323. Izotov Y. and Thuan T. X., “The primordial abundance of 4He revisited”, Astrophys. J., 500 (1998) 188.

    Article  ADS  Google Scholar 

  324. Izotov Y. et al., “Helium Abundance in the Most Metal-Deficient Blue Compact Galaxies: IZw18 and SBS 0335-52”, Astrophys. J., 527 (1999) 757.

    Article  ADS  Google Scholar 

  325. Jensen J. B., Tonry J. L. and Blakeslee J. P., “The Extragalactic Distance Scale”, astro-ph/0304427, 23, April 2003.

    Google Scholar 

  326. Jones M. A. and Fry J. N., “Large Scale Structure and the Redshift-Distance Relation”, astro-ph/9804213, 21 April 1998.

    Book  Google Scholar 

  327. Jungman G., Kamionkowski M., Kosowsky A. and Spergel D. N., “Cosmological parameter determination with microwave background maps”, Phys. Rev. D, 54 (1996) 1332 [astro-ph/9512139].

    Article  ADS  Google Scholar 

  328. Jungman G., Kamionkowski M., Kosowsky A. and Spergel D. N., “Weighting the universe with the cosmic microwave background”, Phys. Rev. Lett., 76 (1996) 1007, astro-ph/9507080.

    Article  ADS  Google Scholar 

  329. Kamionkowski M. and Buchalter A., “The Second Peak: The Dark-Energy Density and the Cosmic Microwave Background”, astro-ph/0001045 (2000).

    Google Scholar 

  330. Kamionkowski M., Spergel D. N. and Sugiyama N., “Small-Scale Cosmic Microwave Background Anisotropies as a Probe of the Geometry of the Universe”, Astrophys. J., 426 (1994) L57, astro-ph/9401003.

    Article  ADS  Google Scholar 

  331. Kantowsky R., Vaughan T. and Branch D., “The Effects of Inhomogeneities on Evaluating the Deceleration Parameter q0”, astro/ph 9511108, 24 November 1995.

    Google Scholar 

  332. Kaplinghat M. et al., “Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization”, astro-ph/0207591, Astrophys. J., 583 (2003) 24.

    Article  ADS  Google Scholar 

  333. Kavano L., preprint FermiLab Pub 92/04A (1992).

  334. Khokhlov A. M., “Three-Dimensional Modeling of the Deflagration Stage of a Type Ia Supernova Explosion”, 2000, astro-ph/0008463.

    Google Scholar 

  335. Kinney W. H., “Constraining Inflation with Cosmic Microwave Background Polarization”, Phys. Rev. D, 58 (1998) 123506, astro-ph/9806259.

    Article  ADS  Google Scholar 

  336. Kinney W. H., “How to fool CMB parameter estimation”, astro-ph/0005410.

  337. Kirkman D. et al., “The cosmological baryon density from the deuterium to hydrogen ratio toward QSO absorption systems”, 2003, astro-ph/0302006.

    Google Scholar 

  338. Knox L., “Characterizing the Peak in the CMB Angular Power Spectrum”, L. Page, Phys. Rev. Lett., 85 (2000) 1366, astro-ph/0002162.

    Article  ADS  Google Scholar 

  339. Kodama H. and Sasaki M., “Cosmological Perturbation Theory”, Prog. Theor. Phys., 78 (1984) 1.

    Article  Google Scholar 

  340. Kogut A. et al., “Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps”, Astrophys. J., 419 (1993) 1.

    Article  ADS  Google Scholar 

  341. Kogut A. et al., “Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization”, 2003, astro-ph/0302213.

    Google Scholar 

  342. Kolb E. W., Chung D. J. H. and Riotto A., “WIMPZILLAS”, hep-ph/9810361.

  343. Kolb E. W. and Turner M. S., “The Early Universe”, Frontiers in Physics, (Addison-Wesley, Redwood City, Cal, 1990).

    Google Scholar 

  344. Koranyi D. M. and Strauss M. A., “Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey”, Astrophys. J., 477 (1997) 36.

    Article  ADS  Google Scholar 

  345. Kneissl R. et al., “Search for correlations between COBE DMR and ROSAT PSPC all-sky survey data”, Astron. Astrophys., 320 (1997) 685, astro-ph/9610160.

    ADS  Google Scholar 

  346. Kundt J., Tracts in Modern Physics, 58 (Springer, 1971) p. 1.

    ADS  Google Scholar 

  347. Lahav O., Lilje P. B., Primack J. R. and Rees M. J., “Dynamical effects of the cosmological constant”, Mon. Not. R. Astron. Soc., 251 (1991) 128.

    Article  ADS  Google Scholar 

  348. Lahav O., “Cooling of population III objects in a pressure supported collapse”, Mon. Not. R. Astron. Soc., 220 (1986) 259.

    Article  ADS  MATH  Google Scholar 

  349. Langacker P., Segre G. and Strassler M. J., “Implications of Gauge Unification for Time Variation of the Fine Structure Constant”, hep-ph/0112233, Phys. Lett B, 528 (2002) 121.

    Article  ADS  Google Scholar 

  350. Langer N. et al., “The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae”, astro-ph/0008444, Astron. Astrophys., 362 (2000) 1046.

    ADS  Google Scholar 

  351. Langlois D. and Piran T., “Dipole Anisotropy from an Entropy Gradient”, astro-ph/9507094, 1995.

    Google Scholar 

  352. La Roque S. J., Carlstrom J. E., Reese E. D., Holder G. P., Holzapfel W. L., Joy M. and Grego L., “The SZ Spectrum of Abell 2163” 2002, astro-ph/0204134, submitted to Astrophys. J.

    Google Scholar 

  353. Latter W. and Black J., “Molecular hydrogen formation by excited atomradiative association”, Astrophys. J., 372 (1991) 161.

    Article  ADS  Google Scholar 

  354. Lawrence C. R., Scott D. and White M., “What has the CMB ever done for us?”, Proc. Astron. Soc. Pacific, 111 (1995) 525, astro-ph/9810446, http://astron.berkeley.edu/~mwhite/romans/index.html.

    Article  ADS  Google Scholar 

  355. Layzer D., Astrophys. J. Lett., 1 (1968) 99.

    Google Scholar 

  356. Leibundgut B., “Type Ia Supernovae”, 2000, astro-ph/0003326, Astron. Astrophys. Rev., 10 (2000) 179.

    Article  ADS  Google Scholar 

  357. Leibundgut B. and Sollerman J., “A cosmological surprise: the universe accelerates”, 2002, astro-ph/0204492, Europhys. News, 32 no. 4 (2001).

    Google Scholar 

  358. DASIpol02 Leitch E. M. et al., “Measuring Polarization with DASI”, Nature, 420 (2003) 763, astro-ph/0209476, DASIpol.

    Google Scholar 

  359. Lepp S., Stancil P. C. and Dalgarno A., “Atomic and molecular processes in the early Universe”, Phys. J. B, 35 (2002) R57.

    Article  Google Scholar 

  360. Lepp S. and Shull M., “The kinetic theory of H2 dissociation”, Astrophys. J., 270 (1983) 578.

    Article  ADS  Google Scholar 

  361. Lepp S. and Shull M., “Molecules in the early universe”, Astrophys. J., 280 (1984) 465.

    Article  ADS  Google Scholar 

  362. Levshakov S. R. et al., “Molecular hydrogen,deuterium and metal abundances in DLA systems at z = 3.025 toward QSO 0347-3819”, 2001, astro-ph/0105529.

    Google Scholar 

  363. Lewis A., Challinor A. and Lasenby A., “Efficient Computation of CMB anisotropies in closed FRW models”, Astrophys. J., 538 (2000) 473, astro-ph/9911177. See also 4 following references.

    Article  ADS  Google Scholar 

  364. Liddle A. R., “Inflation as the Unique Causal Mechanism for Generating Density Perturbations on Scales Well Above the Hubble Radius”, astro-ph/9410083, Phys. Rev. D, 51 (1995) 5347.

    Article  ADS  Google Scholar 

  365. Liddle A. R., “Inflation and the cosmic microwave background”, in Proceedings of 3K cosmology, Roma, edited by Melchiorri F., (1999), astro-ph/9901041.

    Google Scholar 

  366. Lifshitz E. M., Phys. J., URSS Academy of Science, 10 (1946) 116.

    Google Scholar 

  367. Lima J. A. S., Silva A. I. and Viegas S. M., “Is the radiation temperature-redshift relation of the standard cosmology in accordance with the data?”, Mon. Not. R. Astron. Soc., 312 (2000) 747.

    Article  ADS  Google Scholar 

  368. Lisi E., Sarkar S. and Villante F., “Big-Bang nucleosynthesis limit on Nν”, Phys. Rev. D, 59 (1999) 3520.

    Article  ADS  Google Scholar 

  369. Longair M. S., “Galaxy Formation” in Evolution of Galaxies edited by Appenzeller I., Habing H. J., Lena P., Lect. Notes Phys., 333 (Springer Verlag, 198

  370. Lo Secco J. M., Mathews G. J., “Prospects for Constraining Cosmology with the Extragalactic Cosmic Microwave Background Temperature”, astro-ph/0108260, 15 Aug. 2001.

    Google Scholar 

  371. Lubin P. M., Epstein G. L. and Smoot G. F., “3-mm Anisotropy Measurement and the Quadrupole Component in the Cosmic Background Radiation”, Phys. Rev. Lett., 50, Issue 8, February 21 (1983), pp. 616–619.

    Article  ADS  Google Scholar 

  372. Lu L., Sargent W. L. W., Womble D. S. and Barlow T. A., “Properties of a High-Redshift Galaxy at z = 4.4”, Astrophys. J., 457L (1996) 1L.

    Google Scholar 

  373. Ma C. and Bertschinger E., “Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges”, Astrophys. J., 455 (1995) 7, astro-ph/9506072.

    Article  ADS  Google Scholar 

  374. MacLow M. M. and Shull J. M., “Molecular processes and gravitational collapse in intergalactic shocks”, Astrophys. J., 302 (1986) 585.

    Article  ADS  Google Scholar 

  375. Magueijo J. and Hobson M., “Cosmic Microwave Background experiments targeting the cosmic strings Doppler peak signal”, astro-ph/9602023.

  376. Maoli R., Melchiorri F. and Tosti T., “Molecules in the postrecombination universe and microwave background anisotropies”, Astrophys. J., 425 (1994) 372.

    Article  ADS  Google Scholar 

  377. Maoli R. et al., “Molecular signals from primordial clouds at high redshift”, Astrophys. J., 457 (1996) 1.

    Article  ADS  Google Scholar 

  378. Marciano W. J., “Time variation of the fundamental “constants” and Kaluza-Klein theories”, Phys. Rev. Lett., 52 (1984) 489.

    Article  ADS  Google Scholar 

  379. Martins C. J. A. P. et al., “WMAP constraints on varying α and the Promise of Reionization”, 2003, astro-ph/0302295.

    Google Scholar 

  380. Mather J. C., Fixsen D. J., Shafer R. A., Mosier C. and Wilkinson D. T., “Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS)”, Astrophys. J., 512 (1999) 511, astro-ph/9810373.

    Article  ADS  Google Scholar 

  381. Matsuda T., Sato H. and Takeda H., “Cooling of Pre-galactic gas clouds by hydrogen molecule”, Prog. Theor. Phys., 41 (1969) 219.

    Article  ADS  Google Scholar 

  382. Mattig, “Ber den zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit”, W. Astro. Nach., 284 (1958) 109.

    Article  ADS  Google Scholar 

  383. Mauskopf P. et al., Astrophys. J. Lett., 536 (2000) L59. Boom-NA.

    Article  ADS  Google Scholar 

  384. Meikle W. P. S. et al., “An early time infrared and optical study of the Type Ia supernovae 1994 D and 1991 T”, Mon. Not. R. Astron. Soc., 281 (1996) 263.

    Article  ADS  Google Scholar 

  385. Meikle W. P. S., “Infrared and optical spectrocospy of Type Ia supernovae”, in Thermonuclear Supernovae, edited by Ruiz-Lapente R. et al. (Kluwer, Dordrecht, 1997) pp. 53–64.

    Chapter  Google Scholar 

  386. Melchiorri F., Melchiorri-Olivo B., Ceccarelli C. and Pietranera L., “Fluctuations in the Microwave Background at Intermediate Angular Scale”, Astrophys. J. Lett., 250 (1981) L1.

    Article  ADS  Google Scholar 

  387. Melchiorri F. and Boynton P. E., 1979, Atti Fondazione Ronchi, XXXIV, 1-2, 55.

    Google Scholar 

  388. Melchiorri A. et al., “The State of the Dark Energy Equation of State”, 2002, astro- ph/0211522.

    Google Scholar 

  389. Melchiorri B. and Melchiorri F., “The Cosmic Background Radiation”, Riv. Nuovo Cimento, 17 (1994) 1.

    Article  MATH  Google Scholar 

  390. Melchiorri A. and Griffiths L. M., “From Anisotropy to Omega”, astro-ph/0011147, New Astron. Rev., 45 Issue 4-5 (2001).

  391. Melchiorri A., Mersini L., Odman C. J. and Trodden M., “The State of the Dark Enenergy Equation of State” in astro-ph/0211522, 24 Nov. 2002.

    Google Scholar 

  392. Melchiorri A., Ade P. A. R., de Bernardis P., Bock J. J., Borrill J., Boscaleri A., Crill B. P., De Troia G., Farese P., Ferreira P. G., Ganga K., de Gasperis G., Giacometti M., Hristov V. V., Jaffe A. H., Lange A. E., Masi S., Mauskopf P. D., Miglio L., Netterfield C. B., Pascale E., Piacentini F., Romeo G., Ruhl J. E. and Vittorio N., “A Measurement of Ω from the North American Test Flight of Boomerang; astro-ph/9911445; Astrophys. J., 536 Issue 2 (2000) L63–L66.

    Article  ADS  Google Scholar 

  393. Melchiorri F. and Tanzilli P. E., “Search for LiH lines at high redshift”, Int. Modern J. Phys. D, 1 (1993) 605.

    Article  ADS  Google Scholar 

  394. Melchiorri B. and Melchiorri F., “Comparison between COBE preliminary results and ULISSE Observations” in Current Topics in Astrofundamental Physics, edited by Sanchez, Zichichi (World Scientific, Singapore, 1992) p. 145.

    Google Scholar 

  395. Miller A. D. et al., “A measurement of the Angular Power Spectrum of the CMB from l = 100 to 400”, Astrophys. J., 524 (1999) L1. Toco

    Article  ADS  Google Scholar 

  396. Moffat J. W. and Tatarski D. C., “The Age of the Universe, the Hubble Constant and QSOs in Locally Inhomogeneous Universe”, astro-ph/9404048, 31 May 1994.

    Google Scholar 

  397. Molaro P. et al., “The cosmic microwave radiation temperature at z = 3.025 toward QSO 0347-3819”, 2001, astro-ph/0111589.

    Google Scholar 

  398. Mosengheil K., Ann. Phys., 22 (1907) 867.

    Article  Google Scholar 

  399. Mukhanov V. F., Feldman H. A. and Brandenberger R. H., “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions”, Phys. Rep., 215 (1992) 203.

    Article  ADS  MathSciNet  Google Scholar 

  400. Netterfield C. et al., “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background”, astro-ph/0104460, Astrophys. J., 571 (2002) 604.

    Article  ADS  Google Scholar 

  401. Neugebauer G. et al., “The Infrared Astronomical Satellite (IRAS) mission”, Astrophys. J., 278 (1984) L1.

    Article  ADS  Google Scholar 

  402. Newman J. A. and Davis M., “Measuring the cosmic equation of state with counts of galaxies”, astro-ph/9912366.

  403. Niemeyer J. C. and Woosley S. E., “The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs”, astro-ph/9607032, Astrophys. J., 475 (1997) 740.

    Article  ADS  Google Scholar 

  404. Nomoto K., Iwamoto K. and Kishimoto N., “Type Ia Supernovae: Their Origin and Possible Applications in Cosmology”, astro-ph/9706007, Science, 276 (1997).

  405. Nordberg H. P. and Smoot G. F., “The Cosmic Microwave Background Spectrum: an Analysis of Observations”, astro-ph/9805123.

  406. Nugent P., Kim A. and Perlmutter S., “K-corrections and Extinction Corrections for Type Ia Supernovae”, 2002, astro-ph/0205351.

    Book  Google Scholar 

  407. Okumurai K., “Protostellar Collapse with Various Metallicities”, Astrophys. J., 534 (2000) 809.

    Article  ADS  Google Scholar 

  408. Olive K. A., Skillman E. and Steigman G., “The Primordial Abundance of 4He: An Update”, Astrophys. J., 483 (1997) 788.

    Article  ADS  Google Scholar 

  409. Olive K. A. and Thomas D., “Generalized limits to the number of light particle degrees of freedom from big bang nucleosynthesis”, Astropart. Phys., 11 (1999) 403.

    Article  ADS  Google Scholar 

  410. O’Meara J. M. et al., “The Deuterium to Hydrogen Abundance Ratio Towards a Fourth QSO: HSO 105+1619”, astro-ph/0011179, Astrophys. J., 552 (2001) 718.

    Article  ADS  Google Scholar 

  411. Padilla A., Braneworld Cosmology and Holography; in hep-ph 0210217.

  412. Padmanabham T., “Cosmological Constant–The Weight of the Vacuum”, hep-th/02212290, 23 Dec. 2002.

    Google Scholar 

  413. Pain R. et al., “The distant Type Ia supernova rate”, astro-ph/0205476, Astrophys. J., 577 (2002) 120.

    Article  ADS  Google Scholar 

  414. Palla F., Salpeter E. E. and Stahler S. W., “Primordial star formation. The role of molecular hydrogen”, Astrophys. J., 271 (1983) 632.

    Article  ADS  Google Scholar 

  415. Partridge R. B., 3K: The Cosmic Microwave Background Radiation (Cambridge University Press, Cambridge, New York, 1995).

    Book  Google Scholar 

  416. Partridge B. and Wilkinson D. T., Phys. Rev. Lett., 18 (1967) 557.

    Article  ADS  Google Scholar 

  417. Pastor S., “Relic neutrinos: neutrino properties from Cosmology” hep-ph/0306233. Invited Talk at the X International Workshop on Neutrino Telescopes, Venice, March 11-14, 2003.

    Google Scholar 

  418. Patat F. et al., “The Type Ia supernova 1994D in NGC 4526: the early phase”, Mon. Not. R. Astron. Soc., 278 (1996) 111.

    Article  ADS  Google Scholar 

  419. Peacock J., “The power spectrum of galaxy clustering”, Mon. Not. R. Astron. Soc., 253 (1991) 1-5P.

    Article  ADS  Google Scholar 

  420. Peacock J. and Dodds S. J., “Reconstructing the linear power spectrum of cosmological mass fluctuations”, Mon. Not. R. Astron. Soc., 267 (1994) 1020.

    Article  ADS  Google Scholar 

  421. For example, see Peacock J., The Textbook Cosmological Physics (Cambridge University Press, 1999).

    MATH  Google Scholar 

  422. Peebles P. J. E., “Recombination of the Primeval Plasma”, Astrophys. J., 153 (1968) 1.

    Article  ADS  Google Scholar 

  423. Peebles P. J. E., “From Precision Cosmology to Accurate Cosmology”, in astro-ph/0208037, 1 August 2002.

    Google Scholar 

  424. Peebles P. J. E. and Ratra B., “The Cosmological Constant and Dark Energy”, astro-ph/0207347, Rev. Mod. Phys., 75 (2003) 599.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  425. Peebles P. J. E. and Vilenkin A., “Quintessential Inflation”, astro-ph/9810509, Phys. Rev. D., 59 (1999) 063505.

    Article  ADS  Google Scholar 

  426. Peebles P. J. E. and Wilkinson D. T., Phys. Rev., 174 (1968) 2168.

    Article  ADS  Google Scholar 

  427. Peebles P. J. E. and Yu J. T., “Primeval Adiabatic Perturbation in an Expanding Universe”, Astrophys. J., 162 (1970) 815.

    Article  ADS  Google Scholar 

  428. Peimbert M., Peimbert A. and Ruiz M. T., “The Chemical Composition of the Small Magellanic Cloud HII Region NGC 346 and the primordial helium abundance” (2000), astro-ph/0003154.

    Google Scholar 

  429. Peimbert M. et al., “Seven problems related to the determination of the primordial helium abundance”, (2002), astro-ph/0211497.

    Google Scholar 

  430. Penzias A. A. and Wilson R. W., “A Measurement of Excess Antenna Temperature at 4080 Mc/s”, Astrophys. J., 142 (1965) 491.

    Article  ADS  MathSciNet  Google Scholar 

  431. Perlmutter S. et al., “Measurements of the Cosmological Parameters Omega and Lambda from the First 7 Supernovae at z ≥ 0.35T”, Astrophys. J., 483 (1997) 565.

    Article  ADS  Google Scholar 

  432. Perlmutter S. et al., “Measurements of Omega and Lambda from 42 High-Redshift Supernovae”, astro-ph/9812133, Astrophys. J., 517 (1999) 565.

    Article  ADS  MATH  Google Scholar 

  433. Perrotta F., Baccigalupi C. and Matarrese S., “Extended quintessence”, Phys. Rev. D, 61 (2000) 023507 [astro-ph/9906066].

    Article  ADS  Google Scholar 

  434. Pfenniger D. and Puy D., “Possible flakes of molecular hydrogen in the early Universe”, astro-ph/0211393, Astron. Astrophys., 398 (2003) 447.

    Article  ADS  Google Scholar 

  435. Phillips S., Mon. Not. R. Astron. Soc., 269 (1994) 1077.

    Article  ADS  Google Scholar 

  436. Phillips M., “The absolute magnitudes of Type Ia supernovae”, Astrophys. J., 413 (1993) L105.

    Article  ADS  Google Scholar 

  437. Phillips M. et al., “The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae”, astro-ph/9907052, Astron. J., 118 (1999) 1766.

    Article  ADS  Google Scholar 

  438. Pinto P. A. and Eastman R. G., “The Type Ia Supernova Width-Luminosity Relation”, 2000, astro-ph/0006171.

    Google Scholar 

  439. Polnarev A. G., “Polarization and Anisotropy Induced in the Microwave Background by Cosmological Gravitational Waves”, Sov. Astron., 29 (1985) 607.

    ADS  Google Scholar 

  440. Popowski P. A., Weinberg D. H., Ryden B. S. and Osmer P. S., “Quasar Clustering and Space-Time Geometry”, Astrophys. J., 498 (1998) 11 [astro-ph/9707175].

    Article  ADS  Google Scholar 

  441. Pryke C. et al., “Cosmological Parameter Extraction from the First Season of Observations with DASI”, Astro-ph/01044490, Astrophys. J., 568 (2002) 46.

    Article  ADS  Google Scholar 

  442. Puy D., “L’Age Sombre oula Première Lumière”, 2001, Thèse d’habilitation à diriger des recherches Universit´e de Savoie, 2001.

    Google Scholar 

  443. Puy D. and Signore M., “Primordial Molecules in the early cloud formation”, Astron. Astrophys., 305 (1996) 371.

    ADS  Google Scholar 

  444. Puy D. and Signore M., “Molecular Cooling of a collapsing protocloud”, New Astron., 2 (1997) 299.

    Article  ADS  Google Scholar 

  445. Puy D. and Signore M., “Primordial LiH: the chemistry in a collapsing protocloud”, New Astron., 3 (1998a) 27.

    Article  ADS  Google Scholar 

  446. Puy D. and Signore M., “Cooling Balance of a collapsing protocloud and thermal instability”, New Astron., 3 (1998b) 247.

    Article  ADS  Google Scholar 

  447. Puy D. and Signore M., “Primordial Chemistry”, New Astron. Rev., 43 (1999) 223.

    Article  ADS  Google Scholar 

  448. Puy D. and Signore M., “From nuclei to atoms and molecules: the chemical history of the early Universe”, New Astron. Rev., 46 (2002) 709.

    Article  ADS  Google Scholar 

  449. Puy D. et al., “Formation of primordial molecules and thermal balance in the early Universe”, Astron. Astrophys., 267 (1993) 337.

    ADS  Google Scholar 

  450. Pyne T. and Birkinshaw M., “The Luminosity Distance in Perturbed FLRW spacetimes” in astroph 0310841, 29 October 2003.

    Google Scholar 

  451. Quevedo H. and Ryan M. P., “Generating Cosmological Solutions from Known Solutions” astro-ph 0305001 (1 May 2003).

    MATH  Google Scholar 

  452. Randal L. and Sundrum R., “A Large Mass Hierarchy from Small Extra Dimension”, Phys. Rev. Lett., 83 (1999) 3370 (hep-ph/9905221).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  453. Randal L. and Sundrum R., “An Alternative to Compactification”, Phys. Rev. Lett., 83 (1999) 4690 (hep-th/9906064).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  454. Ratra B. and Peebles P. J., “Cosmological Consequences of a Rolling Homogeneous Scalar Field”, Phys. Rev. D, 37 (1988) 3406.

    Article  ADS  Google Scholar 

  455. Rees M. J., “Polarization and Spectrum of the Primeval Radiation in an Anisotropic Universe”, Astrophys. J., 153 (1968) L1.

    Article  ADS  Google Scholar 

  456. Rees M. and Sciama D., Nature, 213 (1967) 374.

    Article  ADS  Google Scholar 

  457. Rees M. J. and Sciama D. W., “Large-scale density inhomogeneities in the universe”, Nature, 217 (1968) 511.

    Article  ADS  Google Scholar 

  458. Reinecke M. et al., “Refined numerical models for multidimensional type Ia supernova simulations”, Astron. Astrophys., 386 (2002) 936.

    Article  ADS  Google Scholar 

  459. Riess A. G., Press W. H. and Kirshner R. P., “A precise Distance Indicator: Type Ia Supernova Multicolor Light CurveShapes”, astro-ph/9604143, Astrophys. J., 473 (1996) 88.

    Article  ADS  Google Scholar 

  460. Rindler W., Essential Relativity, special, general and cosmological (Springer, New York, 1977).

    Book  MATH  Google Scholar 

  461. Roth K. C. and Bauer J. M., “The z = 1.6748 CI Absorber Toward PKS 1756+237”, Astrophys. J., 515 (1999) L57.

    Article  ADS  Google Scholar 

  462. Rubino-Martin J. A. et al., “First results from the Very Small Array-IV. Cosmological parameter estimation”, astro-ph/0205367.

  463. Ryan S. G., Norris J. E. and Beers T. C., “The Spite Lithum Plateau: Ultra Thin but Post-Primordial”, astro-ph/9903059, Astrophys. J., 523 (1999) 654.

    Article  ADS  Google Scholar 

  464. Ryan S. G. et al., “Primordial Lithium and Big Bang Nucleosynthesis”, astro-ph/9905211, Astrophys. J. Lett., 530 (2000) L57.

    Article  ADS  MathSciNet  Google Scholar 

  465. Sachs R. K. and Wolfe A. M., “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background”, Astrophys. J., 147 (1967) 73.

    Article  ADS  Google Scholar 

  466. Sahni V. and Starobinsky A., “The case for a positive cosmological lambda-term”, astro-ph/9904398.

  467. Salati P., “The Spectral Distortions of the CMB Radiation, LEP and Heavy Neutrinos”, in Proceedings of the NATO Advanced Study: The Infrared and Submillimeter Sky after COBE, edited by Signore M., Dupraz C. (Kluwer Academic Publisher, Dordrecht, 1992) pp. 143–173.

    Chapter  Google Scholar 

  468. Sales Lima J. A., “Note on solving for the Dynamics of the Universe” (2001), astro-ph/109215.

    Book  Google Scholar 

  469. Sandage A., Annu. Rev. Astron. Astrophys., 26 (1988) 561.

    Article  ADS  Google Scholar 

  470. Santiago D. I., Kalligas D. and Wagoner R. V., “Scalar-Tensor Cosmologies and their Late Time Evolution”, gr-qc/985044, Phys. Rev. D, 58 (1998) 124005.

    Article  ADS  MathSciNet  Google Scholar 

  471. Sarkar S., “Big Bang nucleosynthesis and physics beyond the Standard Model”, Rep. Prog. Phys., 59 (1996) 1493.

    Article  ADS  Google Scholar 

  472. Savedoff M. P., Nature, 178 (1956) 689.

    Article  ADS  Google Scholar 

  473. Scaramella R. and Vittorio N., “Constraints on the amplitude of primordial density fluctations from the large-scale cosmic microwave background temperature distribution”, Astrophys. J., 353 (1990) 372.

    Article  ADS  Google Scholar 

  474. Shectman S. A. et al., Astrophys. J., 470 (1996) 172.

    Article  ADS  Google Scholar 

  475. Schmidt B. et al., “The High-z Supernova Search: Measuring Cosmic Decleration and Global Curvature of the Universe Using Type Ia Supernovae”, astro-ph/9805200, Astrophys. J., 507 (1998) 46.

    Article  ADS  Google Scholar 

  476. Schramm D. N. and Turner M. S., “Deuteronomy and Numbers”, astro-ph/9703160, Nature, 381 (1999) 193; Rep. Prog. Phys., 59 (1996) 1493.

    Article  ADS  Google Scholar 

  477. Sciama D., “Peculiar Velocity of the Sun and the Cosmic Microwave Background”, Phys. Rev. Lett., 18 (1967) 1065.

    Article  ADS  Google Scholar 

  478. Scott D., Silk J. and White M., “From Microwave Anisotropies to Cosmology”, Science, 268 (1995) 829, astro-ph/9505015.

    Article  ADS  Google Scholar 

  479. Scott D. and White M., “Echoes of Gravity”, Gen. Rel. Grav., 27 (1995) 1023, astro-ph/9505102.

    Article  ADS  Google Scholar 

  480. Scott D., “CMB Anisotropies, Large-Scale Structure and the Future”. To appear in Proceedings of the ASP Symposium: Clusters, Lensing and the Future, edited by Virginia Trimble, 9 pages, (1995), astro-ph/9509035.

    Google Scholar 

  481. Scott D., Srednicki M. and White M., “Sample variance in small-scale cosmic microwave background anisotropy experiments”, Astrophys. J., 421 (1994) L5, astro-ph/9305030.

    Article  ADS  Google Scholar 

  482. Seager S., Sasselov D. D. and Scott D., “A New Calculation of the Recombination Epoch”, Astrophys. J., 523 (1999) L1, astro-ph/9909275.

    Article  ADS  Google Scholar 

  483. Seager S., Sasselov D. D. and Scott D., “How Exactly Did the Universe Become Neutral?” Astro. Phys. Suppl., 128 (2000) 407, astro-ph/9912182.

    Article  ADS  Google Scholar 

  484. Segal I. E., Mon. Not. R. Astron. Soc., 192 (1980) 755.

    ADS  Google Scholar 

  485. Segal I. E., Nicoll J. F., Wu P. and Zhou Z., Astrophys. J., 411 (1993) 465.

    Article  ADS  Google Scholar 

  486. Seldner M., Siebars B., Groth E. and Peebles P. J. E., Astron. J., 82 (1977) 249.

    Article  ADS  Google Scholar 

  487. Seljak U. and Zaldarriaga M., “A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies”, Astrophys. J., 469 (1996) 437, astro-ph/9603033.

    Article  ADS  Google Scholar 

  488. Seljak U., “Rees-Sciama Effect in a CDM Universe”, Astrophys. J., 460 (1996) 549, astro-ph/9506048.

    Article  ADS  Google Scholar 

  489. Seljak U., “A two-fluid approximation for calculating the cosmic microwave background anisotropies”, Astrophys. J., 435 (1994) L87, astro-ph/9406050.

    Article  ADS  Google Scholar 

  490. Sievers J. L. et al., “Cosmological Parameters from Cosmic Background Images observations and Comparisons with BOOMERANG DASI and MAXIMA”, astro-ph/0205387

  491. Signore M. et al., “The lithium problem with IRAM, OSSE and INTEGRAL”, Astrophys. J. S, 92 (1994) 535.

    Article  ADS  Google Scholar 

  492. Signore M. et al., “Primordial molecules and Cosmic Background Radiation Anisotropies”, Astrophys. Lett. and Com., 35 (1997) 349.

    ADS  Google Scholar 

  493. Signore M. and Puy D., “Supernovae and Cosmology”, astro-ph/0010634, New Astron. Rev., 45 (2001) 409.

    Article  ADS  Google Scholar 

  494. Signore M. and Puy D., “Big Bang Nucleosynthesis, Cosmic Microwave Background Anisotropies and Dark Energy”, 2001, astro-ph/0108515.

    Google Scholar 

  495. Signore M. and Puy D., “Primordial Nucleosynthesis”, New Astron. Rev., 43 (1999) 185.

    Article  ADS  Google Scholar 

  496. Silk J. and Wilson M. L., “Large-scale anisotropy of the cosmic microwave background radiation”, Astrophys. J., 244 (1981) L37.

    Article  ADS  Google Scholar 

  497. Silk J., “Cosmic Black-Body Radiation and Galaxy Formation”, Astrophys. J., 151 (1968) 459.

    Article  ADS  Google Scholar 

  498. Skordis C. and Albrecht A., “Planck -scale Quintessence and the physics of structure formation” in astro-ph/0012195, 9 Dec. 2000.

    Google Scholar 

  499. Smoot G. and Davidson K., Wrinkles in Time (W. Morrow, New York, NY, 1993).

    Google Scholar 

  500. Smoot G. F., Gorenstein M. V. and Muller R. A., “Detection Of Anisotropy In The Cosmic Blackbody Radiation”, Phys. Rev. Lett., 39 (1977) 898.

    Article  ADS  Google Scholar 

  501. Smoot G. F. et al., “Structure in the COBE Differential Microwave Radiometer First-Year Maps”, Astrophys. J., 396 (1992) L1-5.

    Article  ADS  Google Scholar 

  502. Smoot G. and Scott D., “The Cosmic Background Radiation”, Particle Data Properties (http://pdg.lbl.gov/2000/contentssports.html#astroetc), astro-ph/9711069 (1997).

    Google Scholar 

  503. Sokasian A. et al., “Cosmic Reionization by Stellar Sources: Population II Stars”, astro-ph/0303098.

  504. Soneira R. P., “A cosmological redshift distance square law”, Astrophys. J., 230 (1979) L63.

    Article  ADS  Google Scholar 

  505. Songaila A. et al., “Measurements of the CMB Temperature at z = 1.776”, Nature, 371 (1994) 43.

    Article  ADS  Google Scholar 

  506. Spergel D. N. and Zaldarriaga M., “CMB polarization as a direct test of Inflation”, Phys. Rev. Lett., 79 (1997) 2180.

    Article  ADS  Google Scholar 

  507. Spergel D. N. et al., “First Year WMAP Observations: Determination of Cosmological Parameters”, astro-ph/0302209.

  508. Spite F. and Spite M., “Abundance of lithium in unevolved halo stars and old disk stars. Interpretation and consequences”, Astron. Astrophys., 115 (1982) 357.

    ADS  Google Scholar 

  509. Stabell R. and Refsdal S., Mon. Not. R. Astron. Soc, 132 (1966) 379.

    Article  ADS  Google Scholar 

  510. Srianand R. et al., Nature, 408 (2000) 931.

    Article  ADS  Google Scholar 

  511. Stancil P. C. and Zygelman B., “Radiative Charge Transfer in Collisions of Li with H+”, Astrophys. J., 472 (1996) 102.

    Article  ADS  Google Scholar 

  512. Stancil P. C. Lepp S. and Dalgarno A., “The Deuterium Chemistry of the Early Universe”, Astrophys. J., 509 (1998) 1.

    Article  ADS  Google Scholar 

  513. Stancil P. C. et al., “Cosmological Recombination of Lithium and its Effect on the Microwave Background Anisotropies”, astro-ph/0201189, Astrophys. J., 580 (2002) 29.

    Article  ADS  Google Scholar 

  514. Steele D., “Unveiling the Flat Universe”, Astronomy, August 2000, (available at http://www.findarticles.com).

    Google Scholar 

  515. Stewart J. M. and Sciama D. W., Nature, 216 (1967) 748.

    Article  ADS  Google Scholar 

  516. Stompor R., “Numerical analysis of the cosmic microwave background anisotropies within framework of linearized gravitational instability model”, Astron. Astrophys., 287 (1994) 693.

    ADS  Google Scholar 

  517. Struble M. F. and Rood H. J., “A Compilation of Redshifts and Velocity Dispersions for ACO Clusters”, Astrophys. J., 125 (1999) 35.

    Article  ADS  Google Scholar 

  518. Strukov I. A.et al., “A Spacecraft Determination of the Dipole Anisotropy in the Microwave Background”, Sov. Ast. Lett., 13 (1987) 65.

    Google Scholar 

  519. Sugiyama N., “Cosmic Background Anisotropies in Cold Dark Matter Cosmology”, Astrophys. J. S, 100 (1995) 281, astro-ph/9412025.

    Article  ADS  Google Scholar 

  520. Sunyaev R. A. and Zel’dovich Y. B., Astrophys. Space Sci., 7 (1970) 3.

    ADS  Google Scholar 

  521. Sunyaev R. A. and Zel’dovich I. B., “Formation of Clusters of Galaxies; Protocluster Fragmentation and Intergalactic Gas Heating”, Astron. Astrophys., 20 (1972) 189.

    ADS  Google Scholar 

  522. Sunyaev R. A., Zel’dovich I. B., “Microwave background radiation as a probe of the contemporary structure and history of the universe”, Annu. Rev. Astron. Astrophys., 18 (1980) 537.

    Article  ADS  Google Scholar 

  523. Teerikorpi P., “Observational Selection Bias affecting the Determination of the Extragalactic Distance Scale”, Annu. Rev. Astron. Astrophys., 35 (1997) 101.

    Article  ADS  Google Scholar 

  524. Tegmark M. et al., “How small were the first cosmological objects?”, astro-ph/96003007, Astrophys. J., 474 (1997) 1.

    Article  ADS  Google Scholar 

  525. Tegmark M., “Doppler peaks and all that: CMB anisotropies and what they can tell us”, Proceedings of the Enrico Fermi International School of Physics, Varenna, Course CXXXII (IOS Press, Amsterdam, 1995) astro-ph/9511148.

    Google Scholar 

  526. Tegmark M., Eisenstein D. J., Hu W. and Kron R., “Cosmic complementarity: probing the acceleration of the Universe”, astro-ph/9805117.

  527. Thielemann F. K., Nomoto K. and Yokoi K., “Explosive nucleosynthesis in carbon deflagration models of Type I supernovae”, Astron. Astrophys., 158 (1986) 17.

    ADS  Google Scholar 

  528. Timmes F. X., Woosley S. E. and Weaver T. A., “Galactic Chemical Evolution: Hydrogen Through Zinc”, astro-ph/9411003, Astrophys. Suppl. J., 98 (1995) 617.

    Article  ADS  Google Scholar 

  529. Takeda H., Sato H. and Matsuda K., “Formation of H2 and Galaxies in the Hot Universe”, Prog. Theor. Phys., 41 (1969) 840.

    Article  ADS  Google Scholar 

  530. Tolmann R. C. Proc. Nat. Acad. Sci., 16 (1930) 511.

    Article  ADS  Google Scholar 

  531. Trentham N., “Distance Measurements as a Probe of Cosmic Acceleration”, astro- ph/0105404, Mon. Not. R. Astron. Soc, 23 May 2001.

    Google Scholar 

  532. Turner M. S., “Cosmological Parameters”, in astro-ph/9904051, 1999.

    Book  Google Scholar 

  533. Turner E., Astrophys. J., 365 (1990) L43.

    Article  ADS  Google Scholar 

  534. Tytler D. et al., “The Deuterium Abundance at z = 0.701 toward QSO1718+4807”, astro-ph/9810217, Astron. J., 117 (1999) 63.

    Article  ADS  Google Scholar 

  535. Uehara H. and Inutsuka S., “Does Deuterium Enable the Formation of Primordial Brown Dwarfs?”, Astrophys. J., 531 (2000) L91.

    Article  ADS  Google Scholar 

  536. Vecchio A., “Early Universe Cosmology in the gravitational wave band”, in Gravitation and Cosmology, edited by Lobo A. et al. (Universidade de Barcellona, 2002) p. 57.

    Google Scholar 

  537. Vittorio N. and Silk J., “Fine scale anisotropy of the cosmic microwave background in a universe dominated by cold dark matter”, Astrophys. J., 285 (1984) L39.

    Article  ADS  Google Scholar 

  538. Vittorio N. and Juszkiewicz R., Astrophys. J. Lett., 314 (1987) L29.

    Article  ADS  Google Scholar 

  539. Wagoner R. V., “Big-Bang Nucleosynthesis Revisited”, Astrophys. J., 179 (1973) 343.

    Article  ADS  Google Scholar 

  540. Wang L. et al., “Cosmic Concordance and Quintessence”, astro-ph/9901388, Astrophys. J., 530 (2000) 17.

    Article  ADS  Google Scholar 

  541. Wang Y. and Turner E. L., “The cosmological constant and advanced gravitational wave detectors”, Phys. Rev. D, 56 (1997) 724 [astro-ph/9603034].

    Article  ADS  Google Scholar 

  542. Wang X., Tegmark M. and Zaldarriaga M., “IS cosmology consistent?”, astro-ph/0105091, Phys. Rev.D, 65 (2002) 123001.

    Article  ADS  Google Scholar 

  543. Webb J. K. et al., “A seach for Time Variation of the Fine Structure Constant”, astro-ph/9803165, Phys. Rev. Lett, 82 (1999) 884.

    Article  ADS  Google Scholar 

  544. Webb J. K. et al., “Further Evidence for Cosmological Evolution of the Fine Structure Constant”, astro-ph/0012539, Phys. Rev. Lett, 87 (2001) 091301.

    Article  ADS  Google Scholar 

  545. Webb J. K. et al., “Does the fine structure constant vary? A third quasar absorption sample consistent with varying alpha”, astro-ph/0210531, Astrophys. Space Sc., 283 (2003) 565.

    Article  ADS  Google Scholar 

  546. Webb J. K. et al., “A High Deuterium Abundance at z = 0.7”, astro-ph/9708001, Nature, 388 (1997) 250.

    Article  ADS  Google Scholar 

  547. Weinberg S., “Curvature Dependence of Peaks in the Cosmic Microwave Background Distribution”, (2000), astro-ph/0006276.

    Book  Google Scholar 

  548. Weller J. and Albrecht A., “Opportunities for future supernova studies of cosmic acceleration”, astro-ph/0008314, Phys. Rev. Lett., 86 (2001) 1939.

    Article  ADS  Google Scholar 

  549. Weller J. and Albrecht A., “Future Supernovae observations as a probe of dark energy”, astro-ph/0106079, Phys. Rev. D, 65 (2001) 103512.

    Article  ADS  Google Scholar 

  550. Wheeler J. C., “Observations and Theory of Supernovae”, astro-ph/0209514, Am. Phys. J., 71 (2003) 11.

    Article  ADS  Google Scholar 

  551. White M., “Anistropies in the CMB”, in Proceedings of the American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF99), Los Angeles, CA, 5-9 Jan 1999, astro-ph/9903232, (1999).

    Google Scholar 

  552. White M. and Scott D., “Why Not Consider Closed Universes?”, Astrophys. J., 459 (1996) 415, astro-ph/9508157.

    Article  ADS  Google Scholar 

  553. White M. and Hu W., “The Sachs-Wolfe effect”, Astron. Astrophys., 321 (1997) 8, astro-ph/9609105.

    ADS  Google Scholar 

  554. White M., Scott D. and Silk J., “Anisotropies in the Cosmic Microwave Background”, Annu. Rev. Astron. Astrophys., 32 (1994) 319.

    Article  ADS  Google Scholar 

  555. White M., “Complementary Measures of the Mass Density and Cosmological Constant”, Astrophys. J., 506 (1998) 495, astro-ph/9802295.

    Article  ADS  Google Scholar 

  556. Wilson M. L., “On the anisotropy of the cosmological background matter and radiation distribution. II - The radiation anisotropy in models with negative spatial curvature”, Astrophys. J., 273 (1983) 2.

    Article  ADS  Google Scholar 

  557. Wilson M. L. and Silk J., “On the anisotropy of the cosmological background matter and radiation distribution. I - The radiation anisotropy in a spatially flat universe”, Astrophys. J., 243 (1981) 14.

    Article  ADS  Google Scholar 

  558. Winston R., “Nonimaging Optics”, Scientific American, 52, march 2001

  559. Winston R., J. Opt. Soc. Am., 60 (1970) 245.

    Article  ADS  Google Scholar 

  560. Wirtz C., “Notiz zur Radialbewegung der Spiralnebel”, Astronom. Nach., 216 (1922) 451.

    Article  ADS  Google Scholar 

  561. Wirtz C., “De Sitters Kosmologie und die Radialbewegungen der Spiralnebel”, Astronom. Nach., 222 (1924) 21.

    Article  ADS  Google Scholar 

  562. Wolfe A. M. and Burbidge G. R., Astrophys. J., 156 (1969) 345.

    Article  ADS  Google Scholar 

  563. Woosley S. E. and Weaver T. A., “The physics of supernova explosions”, Annu. Rev. Astron. Astrophys., 24 (1986) 205.

    Article  ADS  Google Scholar 

  564. Wright E. L. et al., “Interpretation of the COBE FIRAS CMBR spectrum”, Astrophys. J., 420 (1994) 450.

    Article  ADS  Google Scholar 

  565. Zaldarriaga M., “Fluctuations in the Cosmic Microwave Background”, PhD Thesis (MIT), 132 pages, astro-ph/9806122, (1998).

    Google Scholar 

  566. Zaldarriaga M., “Polarization of the Microwave Background in Reionized Models”, astro-ph/9608050, Phys. Rev. D, 55 (1997) 1822.

    Article  ADS  Google Scholar 

  567. Zaldarriaga M., Seljak U. and Bertschinger E., “Integral Solution for the Microwave Background Anisotropies in Nonflat Universes”, Astrophys. J., 494 (1998) 491, astro-ph/9704265.

    Article  ADS  Google Scholar 

  568. Zaldarriaga M. and Seljak U., “CMBFAST for spatially closed universes”, astro-ph/9911219.

  569. Zaldarriaga M., Spergel D. N. and Seljak U., “Microwave Background Constraints on Cosmological Parameters”, Astrophys. J., 488 (1997) 1, astro-ph/9702157.

    Article  ADS  Google Scholar 

  570. Zel’dovich Ya. B. and Grishchuk L. P., “Long-wave length perturbations of a Friedmann world and anisotropy of the RELICT radiation”, Astron. Zh., 55 (1978) 209.

    ADS  Google Scholar 

  571. Zel’dovich Ya. B., Kurt V. G. and Sunyaev R. A., “Recombination of hydrogen in the hot model of the universe”, Sov. Phys. JETP, 28 (1969) 146.

    ADS  Google Scholar 

  572. Zlatev I. and Steinhardt P. J., “A tracker solution to the cold dark matter cosmic coincidence problem”, Phys. Lett. B, 459 (1999) 570 [astro-ph/9906481].

    Article  ADS  Google Scholar 

  573. Zumino B., Nucl. Phys. B, 89 (1975) 535.

    Article  ADS  Google Scholar 

  574. Zwiky F., Phys. Rev., 15 (1929) 773.

    Google Scholar 

  575. Zwiky F., Phys. Rev., 33 (1929) 1077.

    Google Scholar 

  576. Zwicky F., “The Molecular-Hydrogen Content of the Universe”, Publ. Astron. Soc. Pacific, 71 (1959) 468.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Melchiorri.

Additional information

Updated version of a lecture delivered in September 2002 at the Annual Meeting of the Italian Physical Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchiorri, F., Olivo-Melchiorri, B. & Signore, M. Precision Cosmology. Riv. Nuovo Cim. 26, 1–144 (2003). https://doi.org/10.1393/ncr/i2003-10004-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2003-10004-0

Navigation