Skip to main content
Log in

Changes in presenilin 2-binding Wnt proteins, behavior, amyloid-β 42, γ-secretase activity, and testosterone sensitivity in transgenic mice coexpressing tetracycline-controlled transactivator and human mutant presenilin 2

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Nonregulatable promoters have been mainly used to produce transgenic mice that express the human genes for Alzheimer's disease (AD). The aim of this study was to produce doubly transgenic mice expressing the regulatable tet promoter-controlled transactivator (tTA) and human mutant presenilin 2 (N141I, hPS2m) genes in order to examine the AD-related phenotypes at the basal and inducible levels. To achieve this, the first lineage of the transgenic line, expressing Tet/tTA and the second lineage of transgenic mice, expressing Tet/hPS2m, were created, and the doubly transgenic mice were produced by crossing the Tet/tTA-transgenic mice with the Tet/hPS2m-transgenic mice. The doubly transgenic mice and nontransgenic littermates were then treated with or without doxycycline. The results showed that removing doxycycline from the transgenic mice resulted in the induction of the transgene, a Wnt signaling defect, behavioral impairment, elevated amyloid-β-42 and γ-secretase activity compared with in the group given doxycyline. Moreover, the expression levels of the hPS2m transgene decreased gradually in the transgenic males, with clear changes becoming apparent between 2 and 4 wk of age. Castrating these males resulted in an increased expression level of the hPS2m gene. This was restored to the normal levels by treatment with testosterone. Therefore, tetregulated transgenic mice can be used to examine the effect of the basal or inducible expression levels of hPS2m on the pathology of AD at the “on/off” states at any stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borchelt D. R., Thinakaran G., Eckman C. B., et al. (1996) Familial Alzheimer's disease-linked presenilin 1 variants elevate Aβ-40 ratio in vitro and in vivo. Neuron 17, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Westaway D., Xia W., et al. (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β protein in both transfected cell and transgenic mice. Nat. Med. 3, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Corder E. H., Saunders A. M., Strittmatter W. J., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 828–829.

    Article  Google Scholar 

  • Dale T. C. (1998) Signal transduction by Wnt family of ligands. Biochem. J. 15, 209–223.

    Google Scholar 

  • De Ferrari G. V., Chacon M. A., Barria M. I., et al. (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta amyloid fibrils. Mol. Psychiatry 8, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B., Annaert W., Cupers P., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch interacellular domain. Nature 398, 518–522.

    Article  PubMed  CAS  Google Scholar 

  • Doble B. W. and Woodgett J. R. (2003) GSK3: tricks of the trade for a multitasking kinase. J. Cell Sci. 116, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., et al. (1996) Increased amyloid β-42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Forss S., Danielson P. E., Catsicas S., et al. (1990) Transgenic mice expressing β-galactosidase in mature neuron under neuron-specific enolase promoter control. Cell 5, 187–197.

    Google Scholar 

  • Hwang D. Y., Cho J. S., Chae K. R., et al. (2003) Differential expression of the tetracycline-controlled transactivator-driven human CYP1B1 gene in double-transgenic mice is due to androgens: application for detecting androgens and antiandrogens. Arch. Biochem. Biophys. 415, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Hwang D. Y., Chae K. R., Kang T. S., et al. (2002) Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J. 16, 805–813.

    Article  PubMed  CAS  Google Scholar 

  • Hwang D. Y., Cho J. S., Lee S. H., et al. (2004) Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw. Exp. Neurol. 186, 20–32.

    Article  PubMed  CAS  Google Scholar 

  • Janicki S. and Monteiro M. J. (1997) Increased apoptosis arising from increased expression of the Alzheimer's disease-associated presenilin-2 mutation (N141I). J. Cell Biol. 139, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y. K. and Ogita Z. (1981) Sexual dimorphism of SDS-peptide patterns from submaxillary gland of mice. J. Exp. Zool. 218, 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Kim T. W., Pettingell W. H., Hallmark O. G., et al. (1997a) Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem. 272, 11,006–11,010.

    CAS  Google Scholar 

  • Kim T. W., Pettingell W. H., Jung Y. K., et al. (1997b) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Kuo Y. M., Emmerling M. R., Vigo-Pelfrey C., et al. (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E., Wasco W., Poorkaj P., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Lim H. J., Cho J. S., Oh J. H., et al. (2005) NSE-controlled carboxyl-terminus of APP gene overex pressing in transgenic mice induces altered expression in behavior, Aβ-42, and GSK3β binding proteins. Cell Mol. Neurobiol. 25, 833–850.

    Article  PubMed  CAS  Google Scholar 

  • Loetscher H., Deuschle U., Brockhaus M., et al. (1997) Presenilins are processed by caspase-type proteases. J. Biol. Chem. 272, 20,655–20,659.

    Article  CAS  Google Scholar 

  • Lue L. F., Kuo Y. M., Roher A. E., et al. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853–862.

    PubMed  CAS  Google Scholar 

  • Martin D. I. and Whitelaw E. (1996) The vagaries of variegating transgenes. Bioassay 18, 919–923.

    Article  CAS  Google Scholar 

  • McLean C. A., Cherny R. A., Fraser F. W., et al. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860–866.

    Article  PubMed  CAS  Google Scholar 

  • Morris R. G. M., Garrud P., Rawlins J. N. P., et al. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Murayama M., Tanake S., Palacino J., et al. (1998) Direct association of presenilin-1 with beta-catenin. FEBS Lett. 433, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Naslund J., Haroutunian V., Moshs R., et al. (2000) Correlation between elevated levels of amyloid betapeptide in the brain and cognitive decline. J. Am. Med. Assoc. 283, 1571–1577.

    Article  CAS  Google Scholar 

  • Nusse R. (1999) WNT targets. Repression and activation. Trends Genet. 15, 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Oyama F., Sawamura N., Kobayashi K., et al. (1998) Mutant presenilin 2 transgenic mouse: effect on an age-dependent increase of amyloid beta-protein 42 in the brain. J. Neurochem. 71, 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Rogaev E. I., Sherrington R., Rogaeva E. A., et al. (1995) Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778.

    Article  PubMed  CAS  Google Scholar 

  • Sawamura N., Morishima-Kawashima M., Waki H., et al. (2000) Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J. Biol. Chem. 275, 27,901–27,908.

    CAS  Google Scholar 

  • Scheuner D., Eckman C., Jensen M., et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R., Rogaev E., Liang Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. and Wolfe M. S. (2000) In search of gammasecretase: presenilin at the cutting edge. Proc. Natl. Acad. Sci. USA 97, 5690–5692.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S., Annaert W., Kim S. H., et al. (2001) Gamma-secretase: never more enigmatic. Trends Neurosci. 24, 2–6.

    Article  Google Scholar 

  • Takashima A., Honda T., Yasutake K., et al. (1998a) Activation of tau protein kinase I/glycogen synthasekinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res. 31, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Takashima A., Murayama M., Murayama O., et al. (1998b) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc. Natl. Acad. Sci. USA 95, 9637–9641.

    Article  PubMed  CAS  Google Scholar 

  • Tsien J. Z., Huerta P. T., and Tonegawa S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  • Walker E. S., Martinez M., Brunkan A. L., et al. (2005) Presenilin 2 familial Alzheimer's disease mutation in partial loss of function and dramatic changes in Abeta 42/40 ratios. J. Neurochem. 92, 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Xia W., Ostaszewski B. L., Kimberly W. T., et al. (2000) FAD mutations in presenilin-1 or amyloid precursor protein decrease the efficacy of a gammasecretase inhibitor: evidence for direct involvement of PS1 in the gamma-secretase cleavage complex. Neurobiol. Dis. 7, 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Chen F., Levesque G., et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta catenin. J. Biol. Chem. 273, 16,470–16,475.

    CAS  Google Scholar 

  • Zhang Z., Hartmann H., Do V. M., et al. (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong K. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, D.Y., Cho, J.S., Kim, C.K. et al. Changes in presenilin 2-binding Wnt proteins, behavior, amyloid-β 42, γ-secretase activity, and testosterone sensitivity in transgenic mice coexpressing tetracycline-controlled transactivator and human mutant presenilin 2. Neuromol Med 8, 415–431 (2006). https://doi.org/10.1385/NMM:8:3:415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:3:415

Index Entries

Navigation