Skip to main content
Log in

No association between a functional NAD(P)H

Quinone oxidoreductase gene polymorphism (Pro187Ser) and tardive dyskinesia

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Several lines of evidence have indicated that free radicals may play a role in the pathophysiology of tardive dyskinesia (TD) (reviewed in Andreassen and Jorgensen, 2000). NAD(P)H: quinone oxidoreductase (NQO1) is an important enzyme in the human body that counteracts the oxidative stress-induced neuronal injury caused by the toxic free radicals such as dopamine-semiquinones. Taking the possible genetic predisposition to TD into account (Yassa and Ananth, 1981), the NQO1 gene is a good candidate gene that may confer increased susceptibility to TD. Based on this hypothesis, Pae et al. (2004) reported a significant association between the Pro187Ser polymorphism in the NQO1 gene and TD. In the present study, we attempted to replicate the findings of Pae et al. (2004) with the same polymorphism in 222 Japanese patients with schizophrenia. No significant difference was detected between patients with and without TD in the allelic distribution (χ2=0.070, d.f.=1,p=0.795) and in the genotypic distribution (χ2=0.910,d.f.=2,p=0.657). In addition, there was no significant difference in terms of total Abnormal Involuntary Movement Scale scores among the three genotype groups (p=0.49). Our results suggest that the NQO1 gene polymorphism does not confer an increased risk of TD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen O. A. and Jorgensen H. A. (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog. Neurobiol. 61, 525–541.

    Article  PubMed  CAS  Google Scholar 

  • Adler L. A., Peselow E., Rotrosen J., et al. (1993) Vitamin E treatment of tardive dyskinesia. Am. J. Psychiatry 150, 1405–1407.

    PubMed  CAS  Google Scholar 

  • Bai Y. M., Yu S. C., and Lin C. C. (2003) Risperidone for severe tardive dyskinesia: a 12-week randomized, double-blind, placebo-controller study. J. Clin. Psychiatry 64, 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  • Barrett J. C., Fry B., Maller J., and Daly M. J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.

    Article  PubMed  CAS  Google Scholar 

  • Bischot L., Van den Brink G., and Porsius A. J. (1993) Vitamin E in extrapyramidal disorders. Pharm. World Sci. 15, 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Drukarch B. and van Muiswinkel F. L. (2000) Drug treatment of parkinson's disease. Biochem Pharmacol. 59, 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Glazer W. M. (2000) Expected incidence of tardive dyskinesia associated with atypical antipsychotics. J. Clin. Psychiatry 61 (Suppl 4), 21–26.

    PubMed  CAS  Google Scholar 

  • Guy W. (1976) Abnormal involuntary movement scale (AIMS), in US Department of Health, Education and Welfare: ECDEU Assessment Manual for Psychopharmacology, revised, US DWEW Publication, Washington, DC, pp. 534–537.

    Google Scholar 

  • Hori H., Ohmori O., Matsumoto C., et al. (2003) NAD(P)H: quinone oxidoreductase (NQO1) gene polymorphism and schizophrenia. Psychiatr. Res. 118, 235–239.

    Article  CAS  Google Scholar 

  • Hori H., Ohmori O., Shinkai T., et al. (2000) Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacogy 23, 170–177.

    Article  CAS  Google Scholar 

  • Kappus H. and Sies H. (1981) Toxic drug effects assoclated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37, 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  • Liou Y. J., Wang Y. C., Lin C. C., et al. (2005) Association analysis of NAD(P)H: quinone oxidoreductase (NQO1) Pro187Ser genetic polymorphism and tardive dyskinesia in patients with schizophrenia in Taiwan. Int. J. Neuropsychopharmacol. 8, 483–486.

    Article  PubMed  CAS  Google Scholar 

  • Lohr J. B. and Caligiuri M. P. (1996) A double-blind placebo-controlled study of vitamin E treatment of tardive dyskinesia. J. Clin. Psychiatry 57, 167–173.

    PubMed  CAS  Google Scholar 

  • Lohr J. B., Kuczenski R., Bracha H. S., Moir M., and Jeste D. V. (1990) Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol. Psychiatry 28, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Pae C. U., Yu H. S., Kim J. J., et al. (2004) Quinone oxidoreductase (NQO1) gene polymorphism (607C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int. J. Neuropsychopharmaco. 7, 495–500.

    Article  CAS  Google Scholar 

  • Shale H. and Tanner C. (1996) Pharmacologicaloptions for the management of dyskinesia. Drugs 52, 849–860.

    PubMed  CAS  Google Scholar 

  • Sham P. C. and Curtis D. (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann. Hum. Genet. 59, 97–105.

    PubMed  CAS  Google Scholar 

  • Schooler N. R. and Kane J. M. (1982) Research diagnoses for tardive dyskinesia. Arch. Gen. Psychiatry 39, 486–487.

    PubMed  CAS  Google Scholar 

  • See R. E. (1991) Striatal dopamine metabolism increases during long-term haloperidol administration in rats but shows tolerance in response to acute challenge with raclopride. Neurosci. Lett. 129, 265–268.

    Article  PubMed  CAS  Google Scholar 

  • The International HapMap Consortium. (2003) The International HapMap Project. Nature 426, 789–796.

    Article  CAS  Google Scholar 

  • Toru M. (1983) Seishinbunretsubyo no yakuri (Pharmacology in schizophrenia), Chu-gai Igakusha Co., Tokyo.

    Google Scholar 

  • Traver R. D., Horikoshi T., Danenberg K. D., et al. (1992) NAD(P)H: quinone oxidoreductase gene expression in human carcinoma cells: characterization of amutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 52, 797–802.

    PubMed  CAS  Google Scholar 

  • Traver R. D., Siegel D., Beall H. D., et al. (1997) Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br. J. Cancer 75, 69–75.

    PubMed  CAS  Google Scholar 

  • Tsai G., Goff D. C., Chang R. W., et al. (1998) Markers glutamatergic neurotransmission and oxidative stress associated tardive dyskinesia. Am. J. Psychiatry 155, 1207–1213.

    PubMed  CAS  Google Scholar 

  • Yassa R. and Ananth J. (1981) Familial tardive dyskinesia. Am. J. Psychiatry 138, 1618–1619.

    PubMed  CAS  Google Scholar 

  • Zhang Z., Zhang X., Hou G., Sha W., and Reynolds G. P. (2002) The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J. Psychiatr. Res. 36, 317–324.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Hori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, H., Shinkai, T., Matsumoto, C. et al. No association between a functional NAD(P)H. Neuromol Med 8, 375–380 (2006). https://doi.org/10.1385/NMM:8:3:375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:3:375

Index Entries

Navigation